English
Language : 

X9418_06 Datasheet, PDF (5/20 Pages) Intersil Corporation – Dual Digitally Controlled Potentiometers
X9418
Figure 2. Instruction Byte Format
Register
Select
I3 I2 I1 I0 R1 R0 0 P0
Instructions
Wiper Counter
Register Select
The four high order bits define the instruction. The
next two bits (R1 and R0) select one of the four
registers that is to be acted upon when a register
oriented instruction is issued. The last bits (P0) select
which one of the two potentiometers is to be affected
by the instruction. Bit 1 is defined to be 0.
Four of the nine instructions end with the transmission
of the instruction byte. The basic sequence is
illustrated in Figure 3. These two-byte instructions
exchange data between the wiper counter register and
one of the data registers. A transfer from a Data
Register to a Wiper Counter Register is essentially a
write to a static RAM. The response of the wiper to this
action will be delayed tWRL. A transfer from the wiper
counter register (current wiper position), to a Data
Register is a write to nonvolatile memory and takes a
minimum of tWR to complete. The transfer can occur
between one of the two potentiometers and one of its
Figure 3. Two-Byte Instruction Sequence
associated registers; or it may occur globally, wherein
the transfer occurs between both of the
potentiometers and one of their associated registers.
Four instructions require a three-byte sequence to
complete. These instructions transfer data between
the host and the X9418; either between the host and
one of the Data Registers or directly between the host
and the wiper counter register. These instructions are:
Read Wiper Counter Register (read the current wiper
position of the selected pot), write Wiper Counter
Register (change current wiper position of the selected
pot), read Data Register (read the contents of the
selected nonvolatile register) and write Data Register
(write a new value to the selected Data Register). The
sequence of operations is shown in Figure 4.
The Increment/Decrement command is different from
the other commands. Once the command is issued
and the X9418 has responded with an acknowledge,
the master can clock the selected wiper up and/or
down in one segment steps; thereby, providing a fine
tuning capability to the host. For each SCL clock pulse
(tHIGH) while SDA is HIGH, the selected wiper will
move one resistor segment towards the VH/RH
terminal. Similarly, for each SCL clock pulse while
SDA is LOW, the selected wiper will move one resistor
segment towards the VL/RL terminal. A detailed
illustration of the sequence and timing for this
operation are shown in Figures 5 and 6 respectively.
SCL
SDA
S 0 1 0 1 A3 A2 A1 A0 A I3 I2 I1 I0 R1 R0 0 P0 A S
T
C
CT
A
K
KO
R
P
T
5
FN8194.3
October 12, 2006