English
Language : 

ISL6277HRZ Datasheet, PDF (30/37 Pages) Intersil Corporation – Multiphase PWM Regulator for AMD Fusion™ Mobile CPUs Using SVI 2.0
ISL6277
Resistor Current-Sensing Network
PHASE1 PHASE2 PHASE3
L
L
L
DCR
DCR
DCR
RSEN RSEN RSEN
RSUM
RSUM
RSUM
RO
RO
RO
VCN+ CN
-
RI
ISUM+
ISUM-
IO
FIGURE 28. RESISTOR CURRENT-SENSING NETWORK
Figure 28 shows the resistor current-sensing network for a
3-phase solution. Each inductor has a series current sensing
resistor, Rsen. Rsum and Ro are connected to the Rsen pads to
accurately capture the inductor current information. The Rsum
and Ro resistors are connected to capacitor Cn. Rsum and Cn
form a filter for noise attenuation. Equations 23 thru 25 give the
VCn(s) expression.
VCns
=
-R----s---e---n--
N

Io
s


AR
sen
s
(EQ. 23)
ARsens
=
-----------1-----------
1
+
------s------
sns
(EQ. 24)
Rsen
=
--------------1--------------
R-----s---u---m---
N

Cn
(EQ. 25)
Transfer function ARsen(s) always has unity gain at DC.
Current-sensing resistor Rsen value does not have significant
variation over-temperature, so there is no need for the NTC
network.
The recommended values are Rsum = 1kΩ and Cn = 5600pF.
Overcurrent Protection
Refer to Equation 1 on page 17 and Figures 22, 26 and 28;
resistor Ri sets the droop current, Idroop. Tables 1 and 2 show the
internal OCP threshold. It is recommended to design Idroop
without using the Rcomp resistor.
For example, the OCP threshold is 1.5V on the IMON pin. This
translates to 45μA of ISUM current or 56.25μA of droop current.
Idroop is designed to be 45μA at full load, so the OCP trip level is
1.25x of the full load current.
For inductor DCR sensing, Equation 26 gives the DC relationship
of Vcn(s) and Io(s):


VCn
=




------------R----n---t--c---n----e---t-----------
Rn
t
cne
t
+
-R----s---u---m---
N

D-----CN-----R---

 Io
(EQ. 26)
Substitution of Equation 26 into Equation 1 gives Equation 27:
Idroop
=
--1---
Ri

-----------R-----n---t--c---n----e---t-----------
Rn
t
cne
t
+
-R----s---u---m---
N

D-----C-----R---
N

Io
(EQ. 27)
Therefore:
Ri
=
---------------R-----n---t--c---n----e---t--------D----C-----R-----------I--o----------------
N



Rn
tc
n
et
+
-R----s-N--u---m---

Idroop
(EQ. 28)
Substitution of Equation 18 and application of the OCP condition
in Equation 28 gives Equation 29:
Ri
=
---------------------RR----------nn------tt----cc------ss--------++----------RR--------nn--------tt---cc---------+---------R-----R----p----p------------D-----C----R-----------I--o---m-----a---x----------------
N




---R-----n---t--c---s----+-----R----n----t--c-----------R----p--
Rntcs + Rntc + Rp
+
-R----s-N--u---m---

Idroopmax
(EQ. 29)
where Iomax is the full load current and Idroopmax is the
corresponding droop current. For example, given N = 3,
Rsum = 3.65kΩ, Rp = 11kΩ, Rntcs = 2.61kΩ, Rntc = 10kΩ,
DCR = 0.9mΩ, Iomax = 65A and Idroopmax = 45μA. Equation 29
gives Ri = 359Ω.
For resistor sensing, Equation 30 gives the DC relationship of
Vcn(s) and Io(s).
VCn
=
-R----s---e---n--
N

Io
(EQ. 30)
Substitution of Equation 30 into Equation 1 gives Equation 31:
Idroop
=
--1---
Ri

R-----s---e---n--
N

Io
(EQ. 31)
Therefore:
Ri
=
--R----s---e----n---------I--o--
N  Idroop
(EQ. 32)
Substitution of Equation 32 and application of the OCP condition
in Equation 28 gives Equation 33:
Ri = N--R----s---e--I--nd---r--o----oI--o-p--m-m----a-a--x--x-
(EQ. 33)
where Iomax is the full load current and Idroopmax is the
corresponding droop current. For example, given N = 3,
Rsen = 1mΩ, Iomax = 65A and Idroopmax = 45µA, Equation 33
gives Ri = 481Ω.
30
FN8270.1
March 8, 2012