English
Language : 

ISL12028_10 Datasheet, PDF (14/29 Pages) Intersil Corporation – Real Time Clock/Calendar with I2C Bus™ and EEPROM
ISL12028, ISL12028A
The effective series load capacitance is the combination of
CX1 and CX2 as shown in Equation 2:
CLOAD
=
----------------1------------------
⎛
⎝
-----1-----
CX1
+
C-----1X----2-⎠⎞
(EQ. 2)
CLOAD
=
⎛
⎝
1---6-----⋅---b---5----+-----8----⋅---b---4-----+----4----⋅---b----3----+----2-2----⋅---b---2----+----1-----⋅---b---1----+-----0---.-5----⋅----b---0----+----9--⎠⎞
p
F
For example, CLOAD(ATR = 00000) = 12.5pF, CLOAD
(ATR = 100000) = 4.5pF, and CLOAD(ATR = 011111) = 20.25pF.
The entire range for the series combination of load capacitance
goes from 4.5pF to 20.25pF in 0.25pF steps. Note that these
are typical values.
DTR Register - DTR2, DTR1, DTR0: Digital
Trimming Register
The digital trimming Bits DTR2, DTR1 and DTR0 adjust the
number of counts per second and average the ppm error to
achieve better accuracy.
DTR2 is a sign bit. DTR2 = 0 means frequency
compensation is > 0. DTR2 = 1 means frequency
compensation is < 0.
DTR1 and DTR0 are scale bits. DTR1 gives 10ppm
adjustment and DTR0 gives 20ppm adjustment.
A range from -30ppm to +30ppm can be represented by
using the three DTR bits.
TABLE 5. DIGITAL TRIMMING REGISTERS
DTR REGISTER
DTR2
DTR1
DTR0
ESTIMATED FREQUENCY
PPM
0
0
0
0
0
1
0
+10
0
0
1
+20
0
1
1
+30
1
0
0
0
1
1
0
-10
1
0
1
-20
1
1
1
-30
PWR Register: SBIB, BSW, VTS2, VTS1, VTS0
SBIB: - Serial Bus Interface (Enable)
The serial bus can be disabled in battery backup mode by
setting this bit to “1”. This will minimize power drain on the
battery. The Serial Interface can be enabled in battery
backup mode by setting this bit to “0”. (default is “0”). See
“RESET” on page 9 and “Power Control Operation” on
page 15.
BSW: Power Control Bit
The Power Control bit, BSW, determines the conditions for
switching between VDD and Back Up Battery. There are two
options.
Option 1 Standard Mode: Set “BSW = 0” (default for
ISL12028A)
Option 2 Legacy/Default Mode: Set “BSW = 1” (default for
ISL12028)
See “Power Control Operation” on page 15 for more details.
Also see “I2C Communications During Battery backup and
LVR Operation” in the “Application Section” on page 22 for
important details.
VTS2, VTS1, VTS0: VRESET Select Bits
The ISL12028 is shipped with a default VDD threshold
(VRESET) per the “Ordering Information” table on page 2.
This register is a non-volatile with no protection, therefore
any writes to this location can change the default value from
that marked on the package. If not changed with a
non-volatile write, this value will not change over normal
operating and storage conditions. However, ISL12028 has
four (4) additional selectable levels to fit the customers
application. Levels are: 4.64V(default), 4.38V, 3.09V, 2.92V
and 2.63V. The VRESET selection is via 3 bits (VTS2, VTS1
and VTS0) (see Table 6).
Care should be taken when changing the VRESET select bits.
If the VRESET voltage selected is higher than VDD, then the
device will go into RESET and unless VDD is increased, the
device will no longer be able to communicate using the I2C.
VTS2
0
0
0
0
1
TABLE 6. VRESET SELECTION
VTS1
0
VTS0
0
VRESET (V)
4.64
0
1
4.38
1
0
3.09
1
1
2.92
0
0
2.63
In battery mode, the RESET signal output is asserted LOW
when the VDD voltage supply has dipped below the VRESET
threshold, but the RESET signal output will not return HIGH
until the device is back to VDD mode even the VDD voltage is
above VRESET threshold.
Device Operation
Writing to the Clock/Control Registers
Changing any of the bits of the clock/control registers
requires the following steps:
1. Write a 02h to the Status Register to set the Write Enable
Latch (WEL). This is a volatile operation, so there is no
delay after the write. (Operation preceded by a start and
ended with a stop).
2. Write a 06h to the Status Register to set both the Register
Write Enable Latch (RWEL) and the WEL bit. This is also
a volatile cycle. The zeros in the data byte are required.
(Operation proceeded by a start and ended with a stop).
14
FN8233.8
August 9, 2010