English
Language : 

HC5513_03 Datasheet, PDF (13/20 Pages) Intersil Corporation – TR909 DLC/FLC SLIC with Low Power Standby
HC5513
The function of this circuit is to maintain the tip and ring
voltages symmetrically around VBAT/2, in the presence of
longitudinal currents. The differential transconductance
amplifiers GT and GR accomplish this by sourcing or sinking
the required current to maintain VC at VBAT/2.
When a longitudinal current is injected onto the tip and ring
inputs, the voltage at VC moves from it’s equilibrium value
VBAT/2. When VC changes by the amount ∆VC, this change
appears between the input terminals of the differential
transconductance amplifiers GT and GR. The output of GT
and GR are the differential currents ∆I1 and ∆I2, which in
turn feed the differential inputs of current sources IT and IR
respectively. IT and IR have current gains of 250 single
ended and 500 differentially, thus leading to a change in IT
and IR that is equal to 500(∆I) and 500(∆I2).
The circuit shown in Figure 20(B) illustrates the tip side of
the longitudinal network. The advantages of a differential
input current source are: improved noise since the noise due
to current source 2IO is now correlated, power savings due
to differential current gain and minimized offset error at the
Operational Amplifier inputs via the two 5kΩ resistors.
Digital Logic Inputs
Table 1 is the logic truth table for the TTL compatible logic
input pins. The HC5513 has two enable inputs pins (E0, E1)
and two control inputs pins (C1, C2).
The enable pin E0 is used to enable or disable the DET
output pin. The DET pin is enabled if E0 is at a logic level 0
and disabled if E0 is at a logic level 1.
The enable pin E1 gates the ground key detector to the DET
output with a logic level 0, and gates the loop or ring trip
detector to the DET output with a logic level 1.
ILONG ILONG
TIP
+
∆VT-
RLARGE
IT
∆I1
∆I1
GT
ILONG
VC +
-
VBAT/2
RLARGE
ILONG
∆I2
GR
∆I2
+ RING
∆VR
IR
- HC5513
A combination of the control pins C1 and C2 is used to select
1 of the 4 possible operating states. A description of each
operating state and the control logic follow:
Open Circuit State (C1 = 0, C2 = 0)
In this state the SLIC is effectively off. All detectors and both
the tip and ring line drive amplifiers are powered down,
presenting a high impedance to the line. Power dissipation is
at a minimum.
Active State (C1 = 0, C2 = 1)
The tip output is capable of sourcing loop current and for open
circuit conditions is about -4V from ground. The ring output is
capable of sinking loop current and for open circuit conditions is
about VBAT + 4V. VF signal transmission is normal. The loop
current and ground key detectors are both active, E0 and E1
determine which detector is gated to the DET output.
Ringing State (C1 = 1, C2 = 0)
The ring relay driver and the ring trip detector are activated.
Both the tip and ring line drive amplifiers are powered down.
Both tip and ring are disconnected from the line via the
external ring relay.
Standby State (C1 = 1, C2 = 1)
Both the tip and ring line drive amplifiers are powered down.
Internal resistors are connected between tip to ground and ring
to VBAT to allow loop current detect in an off-hook condition.
The loop current and ground key detectors are both active, E0
and E1 determine which detector is gated to the DET output.
AC Transmission Circuit Stability
To ensure stability of the AC transmission feedback loop two
compensation capacitors CTC and CRC are required.
Figure 21 (Application Circuit) illustrates their use.
Recommended value is 2200pF.
TIP
RLARGE
VC
RLARGE
RING
TIP CURRENT SOURCE
WITH DIFFERENTIAL INPUTS
20Ω
5kΩ 5kΩ
-
+
∆I1
∆I1
VBAT/2
2I0
GT
TIP DIFFERENTIAL
TRANSCONDUCTANCE
AMPLIFIER
FIGURE 20A.
FIGURE 20. LONGITUDINAL IMPEDANCE NETWORK
FIGURE 20B.
13