English
Language : 

845254 Datasheet, PDF (11/20 Pages) Integrated Device Technology – FemtoClock Crystal-to-3.3V, 2.5V
845254 Data Sheet
FEMTOCLOCK® CRYSTAL-TO-CML CLOCK GENERATOR
Crystal Input Interface
The 845254 has been characterized with 18pF parallel resonant
crystals. The capacitor values shown in Figure 2 below were
determined using a 25MHz, 18pF parallel resonant crystal and were
chosen to minimize the ppm error.
X1
18pF Parallel Crystal
C1
27pF
XTAL_IN
C2
27pF
XTAL_OUT
Figure 2. Crystal Input Interface
Overdriving the XTAL Interface
The XTAL_IN input can accept a single-ended LVCMOS signal
through an AC coupling capacitor. A general interface diagram is
shown in Figure 3A. The XTAL_OUT pin can be left floating. The
maximum amplitude of the input signal should not exceed 2V and
the input edge rate can be as slow as 10ns. This configuration
requires that the output impedance of the driver (Ro) plus the series
resistance (Rs) equals the transmission line impedance. In addition,
matched termination at the crystal input will attenuate the signal in
half. This can be done in one of two ways. First, R1 and R2 in parallel
should equal the transmission line impedance. For most 50
applications, R1 and R2 can be 100. This can also be
accomplished by removing R1 and making R2 50. By overdriving
the crystal oscillator, the device will be functional, but note, the
device performance is guaranteed by using a quartz crystal.
3.3V
Ro ~ 7 Ohm
RS 43
Driv er_LVCMOS
3.3V
R1
100
Zo = 50 Ohm
R2
100
C1
0.1uF
XTAL_IN
XTAL_OUT
Cry stal Input Interf ace
Figure 3A. General Diagram for LVCMOS Driver to XTAL Input Interface
VCC=3.3V
LVPECL
Zo = 50 Ohm
Zo = 50 Ohm
C1
XTAL_IN
R1
0.1uF
50
XTAL_OUT
Cry stal Input Interf ace
R2
50
R3
50
Figure 3B. General Diagram for LVPECL Driver to XTAL Input Interface
845254 REVISION B 08/25/15
11
©2015 Integrated Device Technology, Inc.