English
Language : 

ICS8430-51 Datasheet, PDF (11/16 Pages) Integrated Circuit Systems – 600MHZ, LOW JITTER LVCMOS/ LVTTL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
Integrated
Circuit
Systems, Inc.
PRELIMINARY
ICS8430-51
600MHZ, LOW JITTER
LVCMOS/ LVTTL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
The following component footprints are used in this layout
example: All the resistors and capacitors are size 0603.
POWER AND GROUNDING
Place the decoupling capacitors C14 and C15 as close as pos-
sible to the power pins. If space allows, placing the decoupling
capacitor at the component side is preferred. This can reduce
unwanted inductance between the decoupling capacitor and the
power pin generated by the via.
Maximize the pad size of the power (ground) at the decoupling
capacitor. Maximize the number of vias between power (ground)
and the pads. This can reduce the inductance between the power
(ground) plane and the component power (ground) pins.
If VCCA shares the same power supply with VCC, insert the RC
filter R7, C11, and C16 in between. Place this RC filter as close
to the VCCA as possible.
CLOCK TRACES AND TERMINATION
The component placements, locations and orientations should be
arranged to achieve the best clock signal quality. Poor clock signal
quality can degrade the system performance or cause system fail-
ure. In the synchronous high-speed digital system, the clock signal
is less tolerable to poor signal quality than other signals. Any ring-
ing on the rising or falling edge or excessive ring back can cause
system failure. The trace shape and the trace delay might be re-
stricted by the available space on the board and the component
location. While routing the traces, the clock signal traces should be
routed first and should be locked prior to routing other signal traces.
• The traces with 50Ω transmission lines TL1 and TL2 at
FOUT and nFOUT should have equal delay and run ad-
jacent to each other. Avoid sharp angles on the clock trace.
Sharp angle turns cause the characteristic impedance to
change on the transmission lines.
• Keep the clock trace on the same layer. Whenever pos-
sible, avoid any vias on the clock traces. Any via on the
trace can affect the trace characteristic impedance and
hence degrade signal quality.
• To prevent cross talk, avoid routing other signal traces in
parallel with the clock traces. If running parallel traces is
unavoidable, allow more space between the clock trace
and the other signal trace.
• Make sure no other signal trace is routed between the
clock trace pair.
The matching termination resistors R1, R2, R3 and R4 should
be located as close to the receiver input pins as possible. Other
termination schemes can also be used but are not shown in
this example.
CRYSTAL
The crystal X1 should be located as close as possible to the pins
24 (XTAL1) and 25 (XTAL2). The trace length between the X1
and U1 should be kept to a minimum to avoid unwanted parasitic
inductance and capacitance. Other signal traces should not be
routed near the crystal traces.
8430AY-51
X1
GND
U1
PIN 1
VCC
VIA
C15
C14
C11
R7
C16
VCCA
TL1N
Close to the input
pins of the
receiver
R4
R3
TL1
R2
TL1, TL2 are 50 Ohm traces and
equal length
R1
FIGURE 6B. PCB BOARD LAYOUT FOR ICS8430-51
www.icst.com/products/hiperclocks.html
11
REV. D FEBRUARY 11, 2003