English
Language : 

XR16C2550 Datasheet, PDF (9/38 Pages) Exar Corporation – 2.97V TO 5.5V DUART WITH 16-BYTE FIFO
xr
REV. 1.0.1
XR16C2550
2.97V TO 5.5V DUART WITH 16-BYTE FIFO
2.7 Crystal Oscillator or External Clock Input
The 2550 includes an on-chip oscillator (XTAL1 and XTAL2) to produce a clock for both UART sections in the
device. The CPU data bus does not require this clock for bus operation. The crystal oscillator provides a
system clock to the Baud Rate Generators (BRG) section found in each of the UART. XTAL1 is the input to the
oscillator or external clock buffer input with XTAL2 pin being the output. See “Programmable Baud Rate
Generator” on page 9.
FIGURE 4. TYPICAL OSCILLATOR CONNECTIONS
XTAL1
XTAL2
R2
500 ΚΩ − 1 ΜΩ
R1
0-120 Ω
(Optional)
C1
22-47 pF
Y1
1.8432 MHz
to
24 MHz
C2
22-47 pF
The on-chip oscillator is designed to use an industry standard microprocessor crystal (parallel resonant,
fundamental frequency with 10-22 pF capacitance load, ESR of 20-120 ohms and 100ppm frequency
tolerance) connected externally between the XTAL1 and XTAL2 pins (see Figure 4), with an external 500kΩ to
1 MΩ resistor across it. Alternatively, an external clock can be connected to the XTAL1 pin to clock the internal
baud rate generator for standard or custom rates. Typical oscillator connections are shown in Figure 4. For
further reading on oscillator circuit please see application note DAN108 on EXAR’s web site.
2.8 Programmable Baud Rate Generator
A single baud rate generator is provided for the transmitter and receiver, allowing independent TX/RX channel
control. The programmable Baud Rate Generator is capable of operating with a crystal frequency of up to 24
MHz. However, with an external clock input on XTAL1 pin and a 2K ohms pull-up resistor on XTAL2 pin (as
shown in Figure 5) it can extend its operation up to 64 MHz (4Mbps serial data rate) at room temperature and
5.0V.
9