English
Language : 

CY8C38 Datasheet, PDF (5/100 Pages) Cypress Semiconductor – Programmable System-on-Chip (PSoC)
PRELIMINARY
PSoC®3: CY8C38 Family Data Sheet
PSoC’s nonvolatile subsystem consists of Flash, byte-writeable
EEPROM, and nonvolatile configuration options. It provides up
to 64 KB of on-chip Flash. The CPU can reprogram individual
blocks of Flash, enabling boot loaders. The designer can enable
an Error Correcting Code (ECC) for high reliability applications.
A powerful and flexible protection model secures the user's
sensitive information, allowing selective memory block locking
for read and write protection. Up to 2 KB of byte-writable
EEPROM is available on-chip to store application data.
Additionally, selected configuration options such as boot speed
and pin drive mode are stored in nonvolatile memory. This allows
settings to activate immediately after power on reset (POR).
The three types of PSoC I/O are extremely flexible. All I/Os have
many drive modes that are set at POR. PSoC also provides up
to four I/O voltage domains through the Vddio pins. Every GPIO
has analog I/O, LCD drive, CapSense®[4], flexible interrupt
generation, slew rate control, and digital I/O capability. The SIOs
on PSoC allow Voh to be set independently of Vddio when used
as outputs. When SIOs are in input mode they are high
impedance. This is true even when the device is not powered or
when the pin voltage goes above the supply voltage. This makes
the SIO ideally suited for use on an I2C bus where the PSoC may
not be powered when other devices on the bus are. The SIO pins
also have high current sink capability for applications such as
LED drives. The programmable input threshold feature of the
SIO can be used to make the SIO function as a general purpose
analog comparator. For devices with Full-Speed USB the USB
physical interface is also provided (USBIO). When not using
USB these pins may also be used for limited digital functionality
and device programming. All the features of the PSoC I/Os are
covered in detail in the “I/O System and Routing” section on
page 29 of this data sheet.
The PSoC device incorporates flexible internal clock generators,
designed for high stability, and factory trimmed for absolute
accuracy. The Internal Main Oscillator (IMO) is the master clock
base for the system with 1% absolute accuracy at 3 MHz. The
IMO can be configured to run from 3 MHz up to 67 MHz. Multiple
clock derivatives can be generated from the main clock
frequency to meet application needs. The device provides a PLL
to generate system clock frequencies up to 66 MHz (67 MHz
including +1% tolerance) from the IMO, external crystal, or
external reference clock. It also contains a separate, very low
power Internal Low Speed Oscillator (ILO) for the sleep and
watchdog timers. A 32.768 kHz external watch crystal is also
supported for use in Real Time Clock (RTC) applications. The
clocks, together with programmable clock dividers, provide the
flexibility to integrate most timing requirements.
The CY8C38 family supports a wide supply operating range from
1.71 to 5.5V. This allows operation from regulated supplies such
as 1.8 ± 5%, 2.5V ±10%, 3.3V ± 10%, or 5.0V ± 10%, or directly
from a wide range of battery types. In addition, it provides an
integrated high efficiency synchronous boost converter that can
power the device from supply voltages as low as 0.5V. This
enables the device to be powered directly from a single battery
or solar cell. In addition, the designer can use the boost converter
to generate other voltages required by the device, such as a 3.3V
supply for LCD glass drive. The boost’s output is available on the
Vboost pin, allowing other devices in the application to be
powered from the PSoC.
PSoC supports a wide range of low power modes. These include
a 200 nA hibernate mode with RAM retention and a 1 µA sleep
mode with real time clock (RTC). In the second mode the
optional 32.768 kHz watch crystal runs continuously and
maintains an accurate RTC.
Power to all major functional blocks, including the programmable
digital and analog peripherals, can be controlled independently
by firmware. This allows low power background processing
when some peripherals are not in use. This, in turn, provides a
total device current of only 1.2 mA when the CPU is running at
6 MHz or 330 µA running at 1 MHz.
The details of the PSoC power modes are covered in the “Power
System” section on page 25 of this data sheet.
PSoC uses JTAG (4 wire) or Serial Wire Debug (SWD) (2 wire)
interfaces for programming, debug, and test. The 1-wire Single
Wire Viewer (SWV) may also be used for “printf” style debugging.
By combining SWD and SWV, the designer can implement a full
debugging interface with just three pins. Using these standard
interfaces enables the designer to debug or program the PSoC
with a variety of hardware solutions from Cypress or third party
vendors. PSoC supports on-chip break points and 4 KB
instruction and data race memory for debug. Details of the
programming, test, and debugging interfaces are discussed in
the “Programming, Debug Interfaces, Resources” section on
page 57 of this data sheet.
2. Pinouts
The Vddio pin that supplies a particular set of pins is indicated
by the black lines drawn on the pinout diagrams in Figure 2-1
through Figure 2-4. Using the Vddio pins, a single PSoC can
support multiple interface voltage levels, eliminating the need for
off-chip level shifters. Each Vddio may sink up to 100 mA total to
its associated I/O pins and opamps. On the 68 pin and 100 pin
devices each set of Vddio associated pins may sink up to 100
mA. The 48 pin device may sink up to 100 mA total for all Vddio0
plus Vddio2 associated I/O pins and 100 mA total for all Vddio1
plus Vddio3 associated I/O pins.
Document Number: 001-11729 Rev. *I
Page 5 of 100
[+] Feedback