English
Language : 

DS90CR215_15 Datasheet, PDF (16/23 Pages) Texas Instruments – +3.3V Rising Edge Data Strobe LVDS 21-Bit Channel Link - 66 MHz
DS90CR215, DS90CR216
SNLS129D – MARCH 1999 – REVISED APRIL 2013
www.ti.com
COMMON MODE vs. DIFFERENTIAL MODE NOISE MARGIN
The typical signal swing for LVDS is 300 mV centered at +1.2V. The CHANNEL LINK receiver supports a 100
mV threshold therefore providing approximately 200 mV of differential noise margin. Common mode protection is
of more importance to the system's operation due to the differential data transmission. LVDS supports an input
voltage range of Ground to +2.4V. This allows for a ±1.0V shifting of the center point due to ground potential
differences and common mode noise.
POWER SEQUENCING AND POWERDOWN MODE
Outputs of the CNANNEL LINK transmitter remain in TRI-STATE until the power supply reaches 2V. Clock and
data outputs will begin to toggle 10 ms after VCC has reached 3V and the Powerdown pin is above 1.5V. Either
device may be placed into a powerdown mode at any time by asserting the Powerdown pin (active low). Total
power dissipation for each device will decrease to 5 μW (typical).
The CHANNEL LINK chipset is designed to protect itself from accidental loss of power to either the transmitter or
receiver. If power to the transmit board is lost, the receiver clocks (input and output) stop. The data outputs
(RxOUT) retain the states they were in when the clocks stopped. When the receiver board loses power, the
receiver inputs are shorted to V CC through an internal diode. Current is limited (5 mA per input) by the fixed
current mode drivers, thus avoiding the potential for latchup when powering the device.
Figure 25. Single-Ended and Differential Waveforms
16
Submit Documentation Feedback
Copyright © 1999–2013, Texas Instruments Incorporated
Product Folder Links: DS90CR215 DS90CR216