English
Language : 

S1165 Datasheet, PDF (7/23 Pages) Seiko Instruments Inc – HIGH RIPPLE-REJECTION LOW DROPOUT
HIGH RIPPLE-REJECTION LOW DROPOUT CMOS VOLTAGE REGULATOR
Rev.4.1_00
S-1165 Series
 Electrical Characteristics
Item
Output voltage*1
Output current*2
Dropout voltage*3
Line regulation
Load regulation
Output voltage
temperature coefficient*4
Current consumption
during operation
Current consumption
during power-off
Input voltage
ON/OFF pin
input voltage “H”
ON/OFF pin
input voltage “L”
ON/OFF pin
input current “H”
ON/OFF pin
input current “L”
Ripple rejection
Short-circuit current
Table 4
(Ta = 25°C unless otherwise specified)
Symbol
Conditions
Min.
Typ.
Max.
Unit
Test
Circuit
VOUT(E) VIN = VOUT(S) + 1.0 V, IOUT = 30 mA
VOUT(S) VOUT(S) VOUT(S)
× 0.99
× 1.01
V
1
IOUT
VIN ≥ VOUT(S) + 1.0 V
200*5
⎯
⎯ mA 3
Vdrop
IOUT = 200 mA
1.5 V ≤ VOUT(S) ≤ 2.5 V
⎯
0.20 0.30 V
1
2.6 V ≤ VOUT(S) ≤ 5.5 V
⎯
0.14 0.20
ΔVOUT1 VOUT(S) + 0.5 V ≤ VIN ≤ 6.5 V,
ΔVIN•VOUT IOUT = 30 mA
⎯
0.05 0.2 %/V
ΔVOUT2
VIN = VOUT(S) + 1.0 V,
1.0 mA ≤ IOUT ≤ 200 mA
⎯
20
40 mV
ΔVOUT VIN = VOUT(S) + 1.0 V, IOUT = 30 mA,
ΔTa• VOUT −40°C ≤ Ta ≤ 85°C
⎯
±100
⎯
ppm/°
C
ISS1
VIN = VOUT(S) + 1.0 V, ON/OFF pin = ON,
no load
⎯
35
65 μA 2
ISS2
VIN = VOUT(S) + 1.0 V, ON/OFF pin = OFF,
no load
⎯
0.1
1.0
VIN
⎯
2.0
⎯
6.5
V
⎯
VSH
VIN = VOUT(S) + 1.0 V, RL = 1.0 kΩ
1.5
⎯
⎯
4
VSL
VIN = VOUT(S) + 1.0 V, RL = 1.0 kΩ
⎯
⎯
0.3
ISH
VIN = 6.5 V, VON/OFF = 6.5 V
−0.1
⎯
0.1 μA
ISL
VIN = 6.5 V, VON/OFF = 0 V
−0.1
⎯
0.1
RR
VIN = VOUT(S) + 1.0 V, f = 1.0 kHz,
ΔVrip = 0.5 Vrms, IOUT = 30 mA
⎯
70
⎯ dB 5
Ishort
VIN = VOUT(S) + 1.0 V, ON/OFF pin = ON,
VOUT = 0 V
⎯
350
⎯ mA 3
*1. VOUT(S): Set output voltage
VOUT(E): Actual output voltage
Output voltage when fixing IOUT(= 30 mA) and inputting VOUT(S) + 1.0 V
*2. The output current at which the output voltage becomes 95% of VOUT(E) after gradually increasing the output
current.
*3. Vdrop = VIN1 − (VOUT3 × 0.98)
VOUT3 is the output voltage when VIN = VOUT(S) + 1.0 V and IOUT = 200 mA.
VIN1 is the input voltage at which the output voltage becomes 98% of VOUT3 after gradually decreasing
the input voltage.
*4. A change in the temperature of the output voltage [mV/°C] is calculated using the following equation.
ΔVOUT
ΔTa
[mV/°C]*1 = VOUT(S) [V]*2 ×
ΔVOUT
ΔTa • VOUT
[ppm/°C]*3 ÷ 1000
*1. Change in temperature of output voltage
*2. Set output voltage
*3. Output voltage temperature coefficient
*5. The output current can be at least this value.
Due to restrictions on the package power dissipation, this value may not be satisfied. Attention should be
paid to the power dissipation of the package when the output current is large.
This specification is guaranteed by design.
Seiko Instruments Inc.
7