English
Language : 

S-8232 Datasheet, PDF (10/27 Pages) Seiko Instruments Inc – BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK
S-8232 Series
Rev.5.4_00
„ Test Circuits
(1) Test Condition 1, Test Circuit 1
Set S1 = OFF, V1 = V2 = 3.6 V, and V3 = 0 V under normal condition. Increase V1 from 3.6 V gradually.
The V1 voltage when CO = “L” is overcharge detection voltage 1 (VCU1). Decrease V1 gradually. The V1
voltage when CO = “H” is overcharge release voltage 1 (VCD1). Further decrease V1. The V1 voltage
when DO = “L” is overdischarge voltage 1 (VDD1). Increase V1 gradually. The V1 voltage when DO = “H”
is overdischarge release voltage 1 (VDU1). Set S1 = ON, and V1 = V2 = 3.6 V and V3 = 0 V under normal
condition. Increase V1 from 3.6 V gradually. The V1 voltage when CO = “L” is auxiliary overcharge
detection voltage 1 (VCUaux1).
(2) Test Condition 2, Test Circuit 1
Set S1 = OFF, V1 = V2 = 3.6 V, and V3 = 0 V under normal condition. Increase V2 from 3.6 V gradually.
The V2 voltage when CO = “L” is overcharge detection voltage 2 (VCU2). Decrease V2 gradually. The V2
voltage when CO = “H” is overcharge release voltage 2 (VCD2). Further decrease V2. The V2 voltage
when DO = “L” is overdischarge voltage 2 (VDD2). Increase V2 gradually. The V2 voltage when DO = “H”
is overdischarge release voltage 2 (VDU2). Set S1 = ON, and V1 = V2 = 3.6 V and V3 = 0 V under normal
condition. Increase V2 from 3.6 V gradually. The V2 voltage when CO = “L” is auxiliary overcharge
detection voltage 2 (VCUaux2).
(3) Test Condition 3, Test Circuit 1
Set S1 = OFF, V1 = V2 = 3.6 V, and V3 = 0 V under normal condition. Increase V3 from 0 V gradually.
The V3 voltage when DO = “L” is overcurrent detection voltage 1 (VIOV1). Set S1 = ON, V1 = V2 = 3.6 V,
V3 = 0 under normal condition. Increase V3 from 0 V gradually. (The voltage change rate < 1.0 V / ms)
V3 − (V1 + V2) voltage when DO = “L” is overcurrent detection voltage 2 (VIOV2).
(4) Test Condition 4, Test Circuit 2
Set S1 = ON, V1 = V2 = 3.6 V, and V3 = 0 V under normal condition and measure current consumption.
Current consumption I1 is the normal condition current consumption (IOPE). Set S1 = OFF, V1 = V2 =
1.5 V under overdischarge condition and measure current consumption. Current consumption I1 is the
power-down current consumption (IPDN).
(5) Test Condition 5, Test Circuit 2
Set S1 = ON, V1 = V2 = V3 = 1.5 V, and V3 = 2.5 V under overdischarge condition. (V1 + V2 − V3) / I2 is
the internal resistance between VCC and VM (RVCM).
Set S1 = ON, V1 = V2 = 3.6 V, and V3 = 1.1 V under overcurrent condition. V3 / I2 is the internal
resistance between VSS and VM (RVSM).
(6) Test Condition 6, Test Circuit 3
Set S1 = ON, S2 = OFF, V1 = V2 = 3.6 V, and V3 = 0 V under normal condition. Increase V4 from 0 V
gradually. The V4 voltage when I1 = 10 µA is DO voltage “H” (VDO(H)).
Set S1 = OFF, S2 = ON, V1 = V2 = 3.6 V, and V3 = 0.5 V under overcurrent condition. Increase V5 from
0 V gradually. The V5 voltage when I2 = 10 µA is the DO voltage “L” (VDO(L)).
10
Seiko Instruments Inc.