English
Language : 

LTC3703-5_15 Datasheet, PDF (7/32 Pages) Linear Technology – 60V Synchronous Switching Regulator Controller
LTC3703-5
PI FU CTIO S (GN16/G28)
MODE/SYNC (Pin 1/Pin 6): Pulse Skip Mode Enable/Sync
Pin. This multifunction pin provides Pulse Skip Mode en-
able/disable control and an external clock input for synchro-
nization of the internal oscillator. Pulling this pin below 0.8V
or to an external logic-level synchronization signal disables
Pulse Skip Mode operation and forces continuous opera-
tion. Pulling the pin above 0.8V enables Pulse Skip Mode
operation. This pin can also be connected to a feedback
resistor divider from a secondary winding on the inductor
to regulate a second output voltage.
fSET (Pin 2/Pin 7): Frequency Set. A resistor connected to
this pin sets the free running frequency of the internal os-
cillator. See applications section for resistor value selec-
tion details.
COMP (Pin 3/Pin 8): Loop Compensation. This pin is con-
nected directly to the output of the internal error amplifier.
An RC network is used at the COMP pin to compensate the
feedback loop for optimal transient response.
FB (Pin 4/Pin 9): Feedback Input. Connect FB through a
resistor divider network to VOUT to set the output voltage.
Also connect the loop compensation network from COMP
to FB.
IMAX (Pin 5/Pin 10): Current Limit Set. The IMAX pin sets
the current limit comparator threshold. If the voltage drop
across the bottom MOSFET exceeds the magnitude of the
voltage at IMAX, the controller goes into current limit. The
IMAX pin has an internal 12µA current source, allowing the
current threshold to be set with a single external resistor
to ground. See the Current Limit Programming section for
more information on choosing RIMAX.
INV (Pin 6/Pin 11): Top/Bottom Gate Invert. Pulling this pin
above 2V sets the controller to operate in step-up (boost)
mode with the TG output driving the synchronous MOSFET
and the BG output driving the main switch. Below 1V, the
controller will operate in step-down (buck) mode.
RUN/SS (Pin 7/Pin 13): Run/Soft-Start. Pulling RUN/SS be-
low 0.9V will shut down the LTC3703-5, turn off both of the
external MOSFET switches and reduce the quiescent sup-
ply current to 25µA. A capacitor from RUN/SS to ground
will control the turn-on time and rate of rise of the output
voltage at power-up. An internal 4µA current source pull-
up at the RUN/SS pin sets the turn-on time at approximately
750ms/µF.
GND (Pin 8/Pin 14): Ground Pin.
BGRTN (Pin 9/Pin 15): Bottom Gate Return. This pin con-
nects to the source of the pull-down MOSFET in the BG
driver and is normally connected to ground. Connecting a
negative supply to this pin allows the synchronous
MOSFET’s gate to be pulled below ground to help prevent
false turn-on during high dV/dt transitions on the SW node.
See the Applications Information section for more details.
BG (Pin 10/Pin 19): Bottom Gate Drive. The BG pin drives
the gate of the bottom N-channel synchronous switch
MOSFET. This pin swings from BGRTN to DRVCC.
DRVCC (Pin 11/Pin 20): Driver Power Supply Pin. DRVCC
provides power to the BG output driver. This pin should be
connected to a voltage high enough to fully turn on the
external MOSFETs, normally 4.5V to 15V for logic level
threshold MOSFETs. DRVCC should be bypassed to BGRTN
with a 10µF, low ESR (X5R or better) ceramic capacitor.
VCC (Pin 12/Pin 21) : Main Supply Pin. All internal circuits
except the output drivers are powered from this pin. VCC
should be connected to a low noise power supply voltage
between 4.5V and 15V and should be bypassed to GND
(Pin 8) with at least a 0.1µF capacitor in close proximity to
the LTC3703-5.
SW (Pin 13/Pin 26): Switch Node Connection to Inductor
and Bootstrap Capacitor. Voltage swing at this pin is from
a Schottky diode (external) voltage drop below ground to
VIN.
TG (Pin 14/Pin 27): Top Gate Drive. The TG pin drives the
gate of the top N-channel synchronous switch MOSFET. The
TG driver draws power from the BOOST pin and returns to
the SW pin, providing true floating drive to the top MOSFET.
BOOST (Pin 15/Pin 28): Top Gate Driver Supply. The BOOST
pin supplies power to the floating TG driver. The BOOST pin
should be bypassed to SW with a low ESR (X5R or better)
0.1µF ceramic capacitor. An additional fast recovery Schot-
tky diode from DRVCC to BOOST will create a complete float-
ing charge-pumped supply at BOOST.
VIN (Pin 16/Pin 1): Input Voltage Sense Pin. This pin is con-
nected to the high voltage input of the regulator and is used
by the internal feedforward compensation circuitry to im-
prove line regulation. This is not a supply pin.
37035fa
7