English
Language : 

LTC3892-1_15 Datasheet, PDF (27/36 Pages) Linear Technology – 60V Low IQ, Dual, 2-Phase Synchronous Step-Down DC/DC Controller
LTC3892/LTC3892-1
Applications Information
voltages (typically 20V or greater). Transition losses
can be estimated from:
Transition Loss = (1.7) • VIN • 2 • IO(MAX) • CRSS • f
Other hidden losses such as copper trace and internal
battery resistances can account for an additional 5%
to 10% efficiency degradation in portable systems. It
is very important to include these system level losses
during the design phase. The internal battery and fuse
resistance losses can be minimized by making sure that
CIN has adequate charge storage and very low ESR at
the switching frequency. A 25W supply will typically
require a minimum of 20μF to 40μF of capacitance
having a maximum of 20mΩ to 50mΩ of ESR. Other
losses including Schottky conduction losses during
dead-time and inductor core losses generally account
for less than 2% total additional loss.
Checking Transient Response
The regulator loop response can be checked by looking at
the load current transient response. Switching regulators
take several cycles to respond to a step in DC (resistive)
load current. When a load step occurs, VOUT shifts by an
amount equal to ∆ILOAD(ESR), where ESR is the effective
series resistance of COUT. ∆ILOAD also begins to charge or
discharge COUT generating the feedback error signal that
forces the regulator to adapt to the current change and
return VOUT to its steady-state value. During this recov-
ery time VOUT can be monitored for excessive overshoot
or ringing, which would indicate a stability problem.
OPTI-LOOP compensation allows the transient response to
be optimized over a wide range of output capacitance and
ESR values. The availability of the ITH pin not only allows
optimization of control loop behavior, but it also provides
a DC-coupled and AC-filtered closed-loop response test
point. The DC step, rise time and settling at this test
point truly reflects the closed-loop response. Assuming
a predominantly second order system, phase margin and/
or damping factor can be estimated using the percentage
of overshoot seen at this pin. The bandwidth can also
be estimated by examining the rise time at the pin. The
ITH external components shown in Figure 12 circuit will
provide an adequate starting point for most applications.
The ITH series RC-CC filter sets the dominant pole-zero
loop compensation. The values can be modified slightly
to optimize transient response once the final PC layout is
done and the particular output capacitor type and value
have been determined. The output capacitors need to be
selected because the various types and values determine
the loop gain and phase. An output current pulse of 20%
to 80% of full-load current having a rise time of 1μs to
10μs will produce output voltage and ITH pin waveforms
that will give a sense of the overall loop stability without
breaking the feedback loop.
Placing a power MOSFET directly across the output ca-
pacitor and driving the gate with an appropriate signal
generator is a practical way to produce a realistic load step
condition. The initial output voltage step resulting from
the step change in output current may not be within the
bandwidth of the feedback loop, so this signal cannot be
used to determine phase margin. This is why it is better
to look at the ITH pin signal which is in the feedback loop
and is the filtered and compensated control loop response.
The gain of the loop will be increased by increasing RC
and the bandwidth of the loop will be increased by de-
creasing CC. If RC is increased by the same factor that CC
is decreased, the zero frequency will be kept the same,
thereby keeping the phase shift the same in the most
critical frequency range of the feedback loop. The output
voltage settling behavior is related to the stability of the
closed-loop system and will demonstrate the actual overall
supply performance.
A second, more severe transient is caused by switching
in loads with large (>1μF) supply bypass capacitors. The
discharged bypass capacitors are effectively put in parallel
with COUT, causing a rapid drop in VOUT. No regulator can
alter its delivery of current quickly enough to prevent this
sudden step change in output voltage if the load switch
resistance is low and it is driven quickly. If the ratio of
CLOAD to COUT is greater than 1:50, the switch rise-time
should be controlled so that the load rise-time is limited
to approximately 25 • CLOAD. Thus a 10μF capacitor would
require a 250μs rise time, limiting the charging current
to about 200mA.
For more information www.linear.com/LTC3892
38921f
27