English
Language : 

LTC3827 Datasheet, PDF (22/36 Pages) Linear Technology – Low IQ, Dual, 2-Phase Synchronous Step-Down Controller
LTC3827
APPLICATIONS INFORMATION
Topside MOSFET Driver Supply (CB, DB)
External bootstrap capacitors, CB, connected to the BOOST
pins supply the gate drive voltages for the topside MOSFETs.
Capacitor CB in the Functional Diagram is charged though
external diode DB from INTVCC when the SW pin is low.
When one of the topside MOSFETs is to be turned on, the
driver places the CB voltage across the gate-source of the
desired MOSFET. This enhances the MOSFET and turns on
the topside switch. The switch node voltage, SW, rises to
VIN and the BOOST pin follows. With the topside MOSFET
on, the boost voltage is above the input supply: VBOOST
= VIN + VINTVCC. The value of the boost capacitor, CB,
needs to be 100 times that of the total input capacitance
of the topside MOSFET(s). The reverse breakdown of the
external Schottky diode must be greater than VIN(MAX).
When adjusting the gate drive level, the final arbiter is the
total input current for the regulator. If a change is made
and the input current decreases, then the efficiency has
improved. If there is no change in input current, then there
is no change in efficiency.
Fault Conditions: Current Limit and Current Foldback
The LTC3827 includes current foldback to help limit load
current when the output is shorted to ground. If the output
falls below 70% of its nominal output level, then the maxi-
mum sense voltage is progressively lowered from 100mV
to 30mV. Under short-circuit conditions with very low duty
cycles, the LTC3827 will begin cycle skipping in order to
limit the short-circuit current. In this situation the bottom
MOSFET will be dissipating most of the power but less
than in normal operation. The short-circuit ripple current
is determined by the minimum on-time, tON(MIN), of the
LTC3827 (≈180ns), the input voltage and inductor value:
ΔIL(SC) = tON(MIN) (VIN/L)
The resulting short-circuit current is:
ISC
30mV
= RSENSE
–
1
2
ΔIL(SC)
Fault Conditions: Overvoltage Protection (Crowbar)
The overvoltage crowbar is designed to blow a system
input fuse when the output voltage of the regulator rises
much higher than nominal levels. The crowbar causes huge
currents to flow, that blow the fuse to protect against a
shorted top MOSFET if the short occurs while the controller
is operating.
A comparator monitors the output for overvoltage con-
ditions. The comparator (OV) detects overvoltage faults
greater than 10% above the nominal output voltage. When
this condition is sensed, the top MOSFET is turned off and
the bottom MOSFET is turned on until the overvoltage
condition is cleared. The bottom MOSFET remains on
continuously for as long as the OV condition persists; if
VOUT returns to a safe level, normal operation automati-
cally resumes. A shorted top MOSFET will result in a high
current condition which will open the system fuse. The
switching regulator will regulate properly with a leaky
top MOSFET by altering the duty cycle to accommodate
the leakage.
Phase-Locked Loop and Frequency Synchronization
The LTC3827 has a phase-locked loop (PLL) comprised of
an internal voltage-controlled oscillator (VCO) and a phase
detector. This allows the turn-on of the top MOSFET of
controller 1 to be locked to the rising edge of an external
clock signal applied to the PLLIN/MODE pin. The turn-on
of controller 2’s top MOSFET is thus 180 degrees out of
phase with the external clock. The phase detector is an
edge sensitive digital type that provides zero degrees
phase shift between the external and internal oscillators.
This type of phase detector does not exhibit false lock to
harmonics of the external clock.
The output of the phase detector is a pair of comple-
mentary current sources that charge or discharge the
external filter network connected to the PLLLPF pin. The
relationship between the voltage on the PLLLPF pin and
operating frequency, when there is a clock signal applied
3827ff
22