English
Language : 

LTC3814-5_15 Datasheet, PDF (21/30 Pages) Linear Technology – 60V Current Mode Synchronous Step-Up Controller
LTC3814-5
APPLICATIONS INFORMATION
If breadboard measurement is not practical, mathemat-
ical software such as MATHCAD or MATLAB can be used
to generate plots from the transfer function given in
Equation 1. A SPICE simulation can also be used to gener-
ate approximate gain/phase curves. Plug the expected
capacitor, inductor and MOSFET values into the following
SPICE deck and generate an AC plot of VOUT/ VITH with gain
in dB and phase in degrees. Refer to your SPICE manual
for details of how to generate this plot.
*This file simulates a simplified model of
the 3814-5 for generating a v(out)/(vith) or
a v(out)/v(outin) bode plot
.param vout=24
.param vin=12
.param L=10u
.param cout=270u
.param esr=.018
.param rload=24
*
.param rdson=0.02
.param Vrng=1
.param vsnsmax={0.173*Vrng-0.026}
.param K={vsnsmax/rdson/1.2}
.param wz={1/esr/cout}
.param wp={2/rload/cout}
*
* Feedback Amplifier
rfb1 outin vfb 29k
rfb2 vfb 0 1k
eithx ithx 0 laplace {0.8-v(vfb)} =
{1/(1+s/1000)}
eith ith 0 value={limit(1e6*v(ithx),0,2.4)}
cc1 ith vfb 100p
cc2 ith x1 0.01p
rc x1 vfb 100k
*
* Modulator/Output Stage
eout out 0 laplace {v(ith)} =
{0.5*K*Rload*vin/vout *(1+s/wz)/(1+s/wp)
*(1-s*L/Rload*vout*vout/vin/vin)}
rload out 0 {rload}
*
vstim out outin dc=0 ac=10m; ac stimulus
.ac dec 100 10 10meg
.probe
.end
With the gain/phase plot in hand, a loop crossover fre-
quency can be chosen. Usually the curves look something
like Figure 10. Choose the crossover frequency about 25%
of the switching frequency for maximum bandwidth. Al-
though it may be tempting to go beyond fSW/4, remember
that significant phase shift occurs at half the switching
frequency that isn’t modeled in the above H(s) equation
and PSPICE code. Note the gain (GAIN, in dB) and phase
(PHASE, in degrees) at this point. The desired feedback
amplifier gain will be –GAIN to make the loop gain at 0dB
at this frequency. Now calculate the needed phase boost,
assuming 60° as a target phase margin:
BOOST = – (PHASE + 30°)
If the required BOOST is less than 60°, a Type 2 loop can
be used successfully, saving two external components.
BOOST values greater than 60° usually require Type 3
loops for satisfactory performance.
Finally, choose a convenient resistor value for R1 (10k
is usually a good value). Now calculate the remaining
values:
(K is a constant used in the calculations)
f = chosen crossover frequency
G = 10(GAIN/20) (this converts GAIN in dB to G in
absolute gain)
38145fc
21