English
Language : 

LTC3834 Datasheet, PDF (20/28 Pages) Linear Technology – 30μA IQ Synchronous Step-Down Controller
LTC3834
APPLICATIONS INFORMATION
Table 2 summarizes the different states in which the
PLLLPF pin can be used.
Table 2
PLLLPF PIN
0V
Floating
INTVCC
RC Loop Filter
PLLIN/MODE PIN
DC Voltage
DC Voltage
DC Voltage
Clock Signal
FREQUENCY
250kHz
400kHz
530kHz
Phase-Locked to External Clock
Minimum On-Time Considerations
Minimum on-time, tON(MIN), is the smallest time duration
that the LTC3834 is capable of turning on the top MOSFET.
It is determined by internal timing delays and the gate
charge required to turn on the top MOSFET. Low duty
cycle applications may approach this minimum on-time
limit and care should be taken to ensure that
tON(MIN)
<
VOUT
VIN(f)
If the duty cycle falls below what can be accommodated
by the minimum on-time, the controller will begin to skip
cycles. The output voltage will continue to be regulated,
but the ripple voltage and current will increase.
The minimum on-time for the LTC3834 is approximately
200ns. However, as the peak sense voltage decreases
the minimum on-time gradually increases up to about
250ns. This is of particular concern in forced continuous
applications with low ripple current at light loads. If the
duty cycle drops below the minimum on-time limit in this
situation, a significant amount of cycle skipping can occur
with correspondingly larger current and voltage ripple.
Efficiency Considerations
The percent efficiency of a switching regulator is equal to
the output power divided by the input power times 100%.
It is often useful to analyze individual losses to determine
what is limiting the efficiency and which change would
produce the most improvement. Percent efficiency can
be expressed as:
%Efficiency = 100% – (L1 + L2 + L3 + ...)
where L1, L2, etc. are the individual losses as a percent-
age of input power.
20
Although all dissipative elements in the circuit produce
losses, four main sources usually account for most of the
losses in LTC3834 circuits: 1) IC VIN current, 2) INTVCC
regulator current, 3) I2R losses, 4) Topside MOSFET
transition losses.
1. The VIN current has two components: the first is the
DC supply current given in the Electrical Characteristics
table, which excludes MOSFET driver and control cur-
rents; the second is the current drawn from the 3.3V
linear regulator output. VIN current typically results in
a small (< 0.1%) loss.
2. INTVCC current is the sum of the MOSFET driver and
control currents. The MOSFET driver current results
from switching the gate capacitance of the power
MOSFETs. Each time a MOSFET gate is switched from
low to high to low again, a packet of charge dQ moves
from INTVCC to ground. The resulting dQ/dt is a cur-
rent out of INTVCC that is typically much larger than the
control circuit current. In continuous mode, IGATECHG
= f(QT + QB), where QT and QB are the gate charges of
the topside and bottom side MOSFETs.
Supplying INTVCC power through the EXTVCC switch
input from an output-derived source will scale the VIN
current required for the driver and control circuits by
a factor of (Duty Cycle)/(Efficiency). For example, in a
20V to 5V application, 10mA of INTVCC current results
in approximately 2.5mA of VIN current. This reduces
the mid-current loss from 10% or more (if the driver
was powered directly from VIN) to only a few percent.
3. I2R losses are predicted from the DC resistances of the
fuse (if used), MOSFET, inductor, current sense resis-
tor, and input and output capacitor ESR. In continuous
mode the average output current flows through L and
RSENSE, but is “chopped” between the topside MOSFET
and the synchronous MOSFET. If the two MOSFETs have
approximately the same RDS(ON), then the resistance
of one MOSFET can simply be summed with the resis-
tances of L, RSENSE and ESR to obtain I2R losses. For
example, if each RDS(ON) = 30mΩ, RL = 50mΩ, RSENSE
= 10mΩ and RESR = 40mΩ (sum of both input and
output capacitance losses), then the total resistance
is 130mΩ. This results in losses ranging from 3% to
13% as the output current increases from 1A to 5A for
3834fb