English
Language : 

LTC3834 Datasheet, PDF (17/28 Pages) Linear Technology – 30μA IQ Synchronous Step-Down Controller
LTC3834
APPLICATIONS INFORMATION
INTVCC Regulators
The LTC3834 features two separate internal P-channel low
dropout linear regulators (LDO) that supply power at the
INTVCC pin from either the VIN supply pin or the EXTVCC
pin, respectively, depending on the connection of the
EXTVCC pin. INTVCC powers the gate drivers and much of
the LTC3834’s internal circuitry. The VIN LDO regulates
the voltage at the INTVCC pin to 5.25V and the EXTVCC
LDO regulates it to 7.5V. Each of these can supply a peak
current of 50mA and must be bypassed to ground with a
minimum of 4.7μF ceramic capacitor. The ceramic capacitor
placed directly adjacent to the INTVCC and PGND IC pins is
highly recommended. Good bypassing is needed to supply
the high transient currents required by the MOSFET gate
drivers and to prevent interaction between the channels.
High input voltage applications in which large MOSFETs are
being driven at high frequencies may cause the maximum
junction temperature rating for the LTC3834 to be exceeded.
The INTVCC current, which is dominated by the gate charge
current, may be supplied by either the 5V VIN LDO or the
7.5V EXTVCC LDO. When the voltage on the EXTVCC pin
is less than 4.7V, the VIN LDO is enabled. Power dissipa-
tion for the IC in this case is highest and is equal to VIN •
IINTVCC. The gate charge current is dependent on operating
frequency as discussed in the Efficiency Considerations
section. The junction temperature can be estimated by
using the equations given in Note 3 of the Electrical Char-
acteristics. For example, the LTC3834 INTVCC current is
limited to less than 41mA from a 24V supply when in the
G package and not using the EXTVCC supply:
TJ = 70°C + (41mA)(36V)(95°C/W) = 125°C
To prevent the maximum junction temperature from being
exceeded, the input supply current must be checked while
operating in continuous conduction mode (PLLIN/MODE
= INTVCC) at maximum VIN.
When the voltage applied to EXTVCC rises above 4.7V, the
VIN LDO is turned off and the EXTVCC LDO is enabled. The
EXTVCC LDO remains on as long as the voltage applied to
EXTVCC remains above 4.5V. The EXTVCC LDO attempts
to regulate the INTVCC voltage to 7.5V, so while EXTVCC
is less than 7.5V, the LDO is in dropout and the INTVCC
voltage is approximately equal to EXTVCC. When EXTVCC
is greater than 7.5V up to an absolute maximum of 10V,
INTVCC is regulated to 7.5V.
Using the EXTVCC LDO allows the MOSFET driver and
control power to be derived from the LTC3834 switch-
ing regulator output (4.7V ≤ VOUT ≤ 10V) during normal
operation and from the VIN LDO when the output is out
of regulation (e.g., start-up, short circuit). If more current
is required through the EXTVCC LDO than is specified,
an external Schottky diode can be added between the
EXTVCC and INTVCC pins. Do not apply more than 10V to
the EXTVCC pin and make sure that EXTVCC ≤ VIN.
Significant efficiency and thermal gains can be realized
by powering INTVCC from the output, since the VIN cur-
rent resulting from the driver and control currents will be
scaled by a factor of (Duty Cycle)/(Switcher Efficiency). For
4.7V to 10V regulator outputs, this means connecting the
EXTVCC pin directly to VOUT. Tying the EXTVCC pin to a 5V
supply reduces the junction temperature in the previous
example from 125°C to:
TJ = 70°C + (24mA)(5V)(95°C/W) = 81°C
However, for 3.3V and other low voltage outputs, addi-
tional circuitry is required to derive INTVCC power from
the output.
The following list summarizes the four possible connec-
tions for EXTVCC:
1. EXTVCC Left Open (or Grounded). This will cause
INTVCC to be powered from the internal 5.25V regulator
resulting in an efficiency penalty of up to 10% at high
input voltages.
2. EXTVCC Connected Directly to VOUT. This is the normal
connection for a 5V regulator and provides the highest
efficiency.
3. EXTVCC Connected to an External supply. If an external
supply is available in the 5V to 7V range, it may be used
to power EXTVCC providing it is compatible with the
MOSFET gate drive requirements.
4. EXTVCC Connected to an Output-Derived Boost Network.
For 3.3V and other low voltage regulators, efficiency
gains can still be realized by connecting EXTVCC to an
output-derived voltage that has been boosted to greater
than 4.7V. This can be done with the capacitive charge
pump shown in Figure 6.
3834fb
17