English
Language : 

LTC3868-1 Datasheet, PDF (14/38 Pages) Linear Technology – Low IQ, Dual 2-Phase Synchronous Step-Down Controller
LTC3868-1
Operation (Refer to the Functional Diagram)
Power Good (PGOOD) Pin
The PGOOD1 pin is connected to an open drain of an
internal N-channel MOSFET. The MOSFET turns on and
pulls the PGOOD1 pin low when the corresponding VFB1 pin
voltage is not within ±10% of the 0.8V reference voltage.
The PGOOD1 pin is also pulled low when the RUN1 pin
is low (shut down). When the VFB1 pin voltage is within
the ±10% requirement, the MOSFET is turned off and the
pin is allowed to be pulled up by an external resistor to a
source no greater than 6V.
Theory and Benefits of 2-Phase Operation
Why the need for 2-phase operation? Up until the
2-phase family, constant frequency dual switching regula-
tors operated both channels in phase (i.e., single phase
operation). This means that both switches turned on at
the same time, causing current pulses of up to twice the
amplitude of those for one regulator to be drawn from the
input capacitor and battery. These large amplitude current
pulses increased the total RMS current flowing from the
input capacitor, requiring the use of more expensive input
capacitors and increasing both EMI and losses in the input
capacitor and battery.
With 2-phase operation, the two channels of the dual
switching regulator are operated 180 degrees out of phase.
This effectively interleaves the current pulses drawn by the
switches, greatly reducing the overlap time where they add
together. The result is a significant reduction in total RMS
input current, which in turn allows less expensive input
capacitors to be used, reduces shielding requirements for
EMI and improves real world operating efficiency.
Figure 2 compares the input waveforms for a representative
single phase dual switching regulator to the LTC3868-1
2-phase dual switching regulator. An actual measure-
ment of the RMS input current under these conditions
shows that 2-phase operation dropped the input current
from 2.53ARMS to 1.55ARMS. While this is an impressive
reduction in itself, remember that the power losses are
5V SWITCH
20V/DIV
3.3V SWITCH
20V/DIV
INPUT CURRENT
5A/DIV
INPUT VOLTAGE
500mV/DIV
IIN(MEAS) = 2.53ARMS
IIN(MEAS) = 1.55ARMS
38681 F01
Figure 2. Input Waveforms Comparing Single-Phase (a) and 2-Phase (b) Operation for Dual Switching Regulators
Converting 12V to 5V and 3.3V at 3A Each. The Reduced Input Ripple with the 2-Phase Regulator Allows
Less Expensive Input Capacitors, Reduces Shielding Requirements for EMI and Improves Efficiency
38681fb
14