English
Language : 

LTC3851-1_15 Datasheet, PDF (11/28 Pages) Linear Technology – Synchronous Step-Down Switching Regulator Controller
LTC3851-1
OPERATION
In sleep mode, the load current is supplied by the output
capacitor. As the output voltage decreases, the EA’s output
begins to rise. When the output voltage drops enough, the
sleep signal goes low, and the controller resumes normal
operation by turning on the top external MOSFET on the
next cycle of the internal oscillator. When a controller is
enabled for Burst Mode operation, the inductor current is
not allowed to reverse. The reverse current comparator,
IREV, turns off the bottom external MOSFET just before the
inductor current reaches zero, preventing it from revers-
ing and going negative. Thus, the controller operates in
discontinuous operation. In forced continuous operation,
the inductor current is allowed to reverse at light loads
or under large transient conditions. The peak inductor
current is determined by the voltage on the ITH pin, just
as in normal operation. In this mode the efficiency at light
loads is lower than in Burst Mode operation. However,
continuous mode has the advantages of lower output
ripple and less interference to audio circuitry.
When the MODE/PLLIN pin is connected to GND, the
LTC3851-1 operates in PWM pulse skipping mode at
light loads. At very light loads the current comparator,
ICMP, may remain tripped for several cycles and force the
external top MOSFET to stay off for the same number of
cycles (i.e., skipping pulses). The inductor current is not
allowed to reverse (discontinuous operation). This mode,
like forced continuous operation, exhibits low output ripple
as well as low audio noise and reduced RF interference
as compared to Burst Mode operation. It provides higher
low current efficiency than forced continuous mode, but
not nearly as high as Burst Mode operation.
Frequency Selection and Phase-Locked Loop
(FREQ/PLLFLTR and MODE/PLLIN Pins)
The selection of switching frequency is a trade-off between
efficiency and component size. Low frequency operation
increases efficiency by reducing MOSFET switching losses,
but requires larger inductance and/or capacitance to main-
tain low output ripple voltage. The switching frequency of
the LTC3851-1 can be selected using the FREQ/PLLFLTR
pin. If the MODE/PLLIN pin is not being driven by an ex-
ternal clock source, the FREQ/PLLFLTR pin can be used
to program the controller’s operating frequency from
250kHz to 750kHz.
A phase-locked loop (PLL) is available on the LTC3851-1
to synchronize the internal oscillator to an external clock
source that is connected to the MODE/PLLIN pin. The
controller operates in forced continuous mode of operation
when it is synchronized. A series RC should be connected
between the FREQ/PLLFLTR pin and GND to serve as the
PLL’s loop filter.
It is suggested that the external clock be applied before
enabling the controller unless a second resistor is con-
nected in parallel with the series RC loop filter network.
The second resistor prevents low switching frequency
operation if the controller is enabled before the clock.
Output Overvoltage Protection
An overvoltage comparator, OV, guards against transient
overshoots (>10%) as well as other more serious con-
ditions that may overvoltage the output. In such cases,
the top MOSFET is turned off and the bottom MOSFET is
turned on until the overvoltage condition is cleared.
Power Good (PGOOD) Pin
The PGOOD pin is connected to an open drain of an internal
N-channel MOSFET. The MOSFET turns on and pulls the
PGOOD pin low when the VFB pin voltage is not within
±10% of the 0.8V reference voltage. The PGOOD pin is
also pulled low when the RUN pin is low (shut down) or
when the LTC3851-1 is in the soft-start or tracking phase.
When the VFB pin voltage is within the ±10% requirement,
the MOSFET is turned off and the pin is allowed to be
pulled up by an external resistor to a source of up to 6V.
The PGOOD pin will flag power good immediately when
the VFB pin is within the ±10% window. However, there is
an internal 17μs power bad mask when VFB goes out of
the ±10% window.
38511fa
11