English
Language : 

ORSO42G5 Datasheet, PDF (1/153 Pages) Lattice Semiconductor – 0.6 to 2.7 Gbps SONET Backplane Interface FPSCs
ORCA® ORSO42G5 and ORSO82G5
0.6 to 2.7 Gbps SONET Backplane Interface FPSCs
July 2008
Data Sheet DS1028
Introduction
Lattice has extended its family of high-speed serial backplane devices with the ORSO42G5 and ORSO82G5
devices. Built on the Series 4 reconfigurable embedded System-on-a-Chip (SoC) architecture, the ORSO42G5 and
ORSO82G5 are high-speed transceivers with aggregate bandwidths of over 10 Gbps and 20 Gbps respectively.
These devices are targeted toward users needing high-speed backplane interfaces for SONET and other non-
SONET applications. The ORSO42G5 has four channels and the ORSO82G5 has eight channels of integrated 0.6-
2.7Gbps SERDES channels with built-in Clock and Data Recovery (CDR), along with more than 400K usable
FPGA system gates. The CDR circuitry, available from Lattice’s high-speed I/O portfolio (sysHSI™), has already
been used in numerous applications to create STS-48/STM-16 and STS-192/STM-64 SONET/SDH interfaces.
With the addition of protocol and access logic, such as framers and Packet-over-SONET (PoS) interfaces, design-
ers can build a configurable interface using proven backplane driver/receiver technology. Designers can also use
the device to drive high-speed data transfer across buses within a system that are not SONET/SDH based. The
ORSO42G5 and ORSO82G5 can also be used to provide a full 10 Gbps backplane data connection and, with the
ORSO82G5, support both work and protection connections between a line card and switch fabric.
The ORSO42G5 and ORSO82G5 support a clockless high-speed interface for interdevice communication on a
board or across a backplane. The built-in clock recovery of the ORSO42G5 and ORSO82G5 allows higher system
performance, easier-to-design clock domains in a multiboard system and fewer signals on the backplane. Network
designers will benefit from using the backplane transceiver as a network termination device. Sister devices, the
ORT42G5 and the ORT82G5, support 8b/10b encoding/decoding and link state machines for 10 Gbit Ethernet
(XAUI) and Fibre Channel. The ORSO42G5 and ORSO82G5 perform SONET data scrambling/descrambling,
streamlined SONET framing, limited Transport OverHead (TOH) handling, plus the programmable logic to termi-
nate the network into proprietary systems. The cell processing feature in the ORSO42G5 and ORSO82G5 makes
them ideal for interfacing devices with any proprietary data format across a high-speed backplane. For non-SONET
applications, all SONET functionality is hidden from the user and no prior networking knowledge is required. The
ORSO42G5 and ORSO82G5 are completely pin-compatible with the ORT42G5 and ORT82G5 devices.
Table 1. ORCA ORSO42G5 and ORSO82G5 Family – Available FPGA Logic
Device
PFU
FPGA Max
PFU Rows Columns Total PFUs User I/O
LUTs
EBR
Blocks2
EBR Bits
(K)
FPGA
System
Gates (K)1
ORSO42G5
36
36
1296
204
10,368
12
111
333-643
ORSO82G5
36
36
1296
372
10,368
12
111
333-643
1. The embedded core, Embedded System Bus, FPGA interface and MPI are not included in the above gate counts. The System Gate
ranges are derived from the following: Minimum System Gates assumes 100% of the PFUs are used for logic only (No PFU RAM) with
40% EBR usage and 2 PLLs. Maximum System Gates assumes 80% of the PFUs are for logic, 20% are used for PFU RAM, with 80%
EBR usage and 4 PLLs.
2. There are two 4K x 36 (144K bits each) RAM blocks in the embedded core which are also accessible by the FPGA logic.
.
© 2008 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
1
DS1028_08.0