English
Language : 

IS61VPS25672A Datasheet, PDF (1/35 Pages) Integrated Silicon Solution, Inc – 256K x 72, 512K x 36, 1024K x 18 18Mb SYNCHRONOUS PIPELINED, SINGLE CYCLE DESELECT STATIC RAM
IS61VPS25672A IS61LPS25672A
IS61VPS51236A IS61LPS51236A
IS61VPS102418A IS61LPS102418A
256K x 72, 512K x 36, 1024K x 18
18Mb SYNCHRONOUS PIPELINED,
SINGLE CYCLE DESELECT STATIC RAM
MAY 2010
FEATURES
• Internal self-timed write cycle
• Individual Byte Write Control and Global Write
• Clock controlled, registered address, data and
control
• Burst sequence control using MODE input
• Three chip enable option for simple depth
expansion and address pipelining
• Common data inputs and data outputs
• Auto Power-down during deselect
• Single cycle deselect
• Snooze MODE for reduced-power standby
• JTAG Boundary Scan for PBGA package
• Power Supply
LPS: VDD 3.3V + 5%, VDDQ 3.3V/2.5V + 5%
VPS: VDD 2.5V + 5%, VDDQ 2.5V + 5%
• JEDEC 100-Pin TQFP, 119-ball PBGA, 165-ball
PBGA, and 209-ball (x72) packages
• Lead-free available
FAST ACCESS TIME
Symbol
tKQ
tKC
Parameter
Clock Access Time
Cycle Time
Frequency
DESCRIPTION
The ISSI IS61LPS/VPS51236A, IS61LPS/VPS102418A,
and IS61LPS/VPS25672A are high-speed, low-power syn-
chronous static RAMs designed to provide burstable, high-
performance memory for communication and networking
applications. The IS61LPS/VPS51236A is organized as
524,288 words by 36 bits, the IS61LPS/VPS102418A is
organized as 1,048,576 words by 18 bits, and the IS61LPS/
VPS25672A is organized as 262,144 words by 72 bits.
Fabricated with ISSI's advanced CMOS technology, the
device integrates a 2-bit burst counter, high-speed SRAM
core, and high-drive capability outputs into a single mono-
lithic circuit. All synchronous inputs pass through regis-
ters controlled by a positive-edge-triggered single clock
input.
Write cycles are internally self-timed and are initiated by
the rising edge of the clock input. Write cycles can be one
to four bytes wide as controlled by the write control inputs.
Separate byte enables allow individual bytes to be written.
The byte write operation is performed by using the byte
write enable (BWE) input combined with one or more
individual byte write signals (BWx). In addition, Global
Write (GW) is available for writing all bytes at one time,
regardless of the byte write controls.
Bursts can be initiated with either ADSP (Address Status
Processor) or ADSC (Address Status Cache Controller)
input pins. Subsequent burst addresses can be generated
internally and controlled by the ADV (burst address
advance) input pin.
The mode pin is used to select the burst sequence order,
Linear burst is achieved when this pin is tied LOW.
Interleave burst is achieved when this pin is tied HIGH or
left floating.
250
200
Units
2.6
3.1
ns
4
5
ns
250
200
MHz
Copyright © 2010 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability
arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any
published information and before placing orders for products.
Integrated Silicon Solution, Inc. — 1-800-379-4774
1
Rev. N
02/12/2010