English
Language : 

ISL6420 Datasheet, PDF (17/19 Pages) Intersil Corporation – Advanced Single Synchronous Buck Pulse-Width Modulation (PWM) Controller
ISL6420
equations at the minimum and maximum output levels for
the worst case response time.
Input Capacitor Selection
Use a mix of input bypass capacitors to control the voltage
overshoot across the MOSFETs. Use small ceramic
capacitors for high frequency decoupling and bulk capacitors
to supply the current needed each time Q1 turns on. Place the
small ceramic capacitors physically close to the MOSFETs
and between the drain of Q1 and the source of Q2.
The important parameters for the bulk input capacitor are the
voltage rating and the RMS current rating. For reliable
operation, select the bulk capacitor with voltage and current
ratings above the maximum input voltage and largest RMS
current required by the circuit. The capacitor voltage rating
should be at least 1.25 times greater than the maximum
input voltage and a voltage rating of 1.5 times is a
conservative guideline. The RMS current rating requirement
for the input capacitor of a buck regulator is approximately
1/2 the DC load current. A more specific equation for
determining the input ripple is the following,
IRMS = IMAX ⋅ (D – D2)
(EQ. 14)
For a through hole design, several electrolytic capacitors
(Panasonic HFQ series or Nichicon PL series or Sanyo
MV-GX or equivalent) may be needed. For surface mount
designs, solid tantalum capacitors can be used, but caution
must be exercised with regard to the capacitor surge current
rating. These capacitors must be capable of handling the
surge-current at power-up. The TPS series available from
AVX, and the 593D series from Sprague are both surge
current tested.
MOSFET Selection/Considerations
The ISL6420 requires 2 N-Channel power MOSFETs. These
should be selected based upon rDS(ON), gate supply
requirements, and thermal management requirements.
In high-current applications, the MOSFET power dissipation,
package selection and heatsink are the dominant design
factors. The power dissipation includes two loss
components; conduction loss and switching loss.
The conduction losses are the largest component of power
dissipation for both the upper and the lower MOSFETs.
These losses are distributed between the two MOSFETs
according to duty factor (see the equations below). Only the
upper MOSFET has switching losses, since the Schottky
rectifier clamps the switching node before the synchronous
rectifier turns on.
PUFET
=
IO2
⋅
RDS(ON)
⋅
D
+
1--
2
IO
⋅
VIN
⋅
tsw
⋅
fsw
(EQ. 15)
Where D is the duty cycle = Vo/Vin, tsw is the switching
interval, and Fsw is the switching frequency.
These equations assume linear voltage-current transitions
and do not adequately model power loss due the reverse-
recovery of the lower MOSFETs body diode. The
gate-charge losses are dissipated by the ISL6420 and don't
heat the MOSFETs. However, large gate-charge increases
the switching interval, tSW which increases the upper
MOSFET switching losses. Ensure that both MOSFETs are
within their maximum junction temperature at high ambient
temperature by calculating the temperature rise according to
package thermal-resistance specifications. A separate
heatsink may be necessary depending upon MOSFET
power, package type, ambient temperature and air flow.
Schottky Selection
Rectifier D2 is a clamp that catches the negative inductor
swing during the dead time between turning off the lower
MOSFET and turning on the upper MOSFET. The diode must
be a Schottky type to prevent the parasitic MOSFET body
diode from conducting. It is acceptable to omit the diode and
let the body diode of the lower MOSFET clamp the negative
inductor swing, but efficiency will drop one or two percent as a
result. The diode's rated reverse breakdown voltage must be
greater than the maximum input voltage.
PLFET = IO2 ⋅ RDS(ON) ⋅ (1 – D)
(EQ. 16)
17
FN9151.4
July 18, 2005