English
Language : 

ISL6334AR5368 Datasheet, PDF (16/31 Pages) Intersil Corporation – VR11.1, 4-Phase PWM Controller with Light Load Efficiency Enhancement and Load Current Monitoring Features
ISL6334AR5368
Channel current balance is essential in achieving the
thermal advantage of multiphase operation. With good
current balance, the power loss is equally dissipated over
multiple devices and a greater area.
Voltage Regulation
The compensation network shown in Figure 6 assures that
the steady-state error in the output voltage is limited only to
the error in the reference voltage (output of the DAC) and
offset errors in the OFS current source, remote-sense and
error amplifiers. Intersil specifies the guaranteed tolerance of
the ISL6334AR5368 to include the combined tolerances of
each of these elements.
The sensed average current IAVG is tied to FB internally. This
current will develop voltage drop across the resistor between
FB and VDIFF pins for droop control. ISL6334AR5368 can not
be used for non-droop applications.
The output of the error amplifier, VCOMP, is compared to
sawtooth waveforms to generate the PWM signals. The
PWM signals control the timing of the Intersil MOSFET
drivers and regulate the converter output to the specified
reference voltage. The internal and external circuitry, which
control voltage regulation, are illustrated in Figure 6.
EXTERNAL CIRCUIT
RC CC COMP
ISL6334AR5368
INTERNAL CIRCUIT
RREF
CREF
DAC
REF
RFB
+
VDROOP
-
FB
VDIFF
IAVG
+
-
VCOMP
ERROR AMPLIFIER
VOUT+
VSEN
+
VOUT-
RGND
-
DIFFERENTIAL
REMOTE-SENSE
AMPLIFIER
FIGURE 6. OUTPUT VOLTAGE AND LOAD-LINE
REGULATION WITH OFFSET ADJUSTMENT
The ISL6334AR5368 incorporates an internal differential
remote-sense amplifier in the feedback path. The amplifier
removes the voltage error encountered when measuring the
output voltage relative to the local controller ground
reference point, resulting in a more accurate means of
sensing output voltage. Connect the microprocessor sense
pins to the non-inverting input, VSEN, and inverting input,
RGND, of the remote-sense amplifier. The remote-sense
output, VDIFF, is connected to the inverting input of the error
amplifier through an external resistor.
A digital-to-analog converter (DAC) generates a reference
voltage based on the state of logic signals at pins VID7
through VID0. The DAC decodes the eight 6-bit logic signal
(VID) into one of the discrete voltages shown in Table 2. All
VID pins have no internal pull-up current sources after tD3.
After tD3, each VID input offers a minimum 30µA pull-up to
an internal 2.5V source for use with open-drain outputs. The
pull-up current diminishes to zero above the logic threshold
to protect voltage-sensitive output devices. External pull-up
resistors can augment the pull-up current sources in case
leakage into the driving device is greater than 30µA.
TABLE 2. VR11 VID 8 BIT
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 VOLTAGE
00000000
OFF
00000001
OFF
0 0 0 0 0 0 1 0 1.60000
0 0 0 0 0 0 1 1 1.59375
0 0 0 0 0 1 0 0 1.58750
0 0 0 0 0 1 0 1 1.58125
0 0 0 0 0 1 1 0 1.57500
0 0 0 0 0 1 1 1 1.56875
0 0 0 0 1 0 0 0 1.56250
0 0 0 0 1 0 0 1 1.55625
0 0 0 0 1 0 1 0 1.55000
0 0 0 0 1 0 1 1 1.54375
0 0 0 0 1 1 0 0 1.53750
0 0 0 0 1 1 0 1 1.53125
0 0 0 0 1 1 1 0 1.52500
0 0 0 0 1 1 1 1 1.51875
0 0 0 1 0 0 0 0 1.51250
0 0 0 1 0 0 0 1 1.50625
0 0 0 1 0 0 1 0 1.50000
0 0 0 1 0 0 1 1 1.49375
0 0 0 1 0 1 0 0 1.48750
0 0 0 1 0 1 0 1 1.48125
0 0 0 1 0 1 1 0 1.47500
0 0 0 1 0 1 1 1 1.46875
0 0 0 1 1 0 0 0 1.46250
0 0 0 1 1 0 0 1 1.45625
0 0 0 1 1 0 1 0 1.45000
0 0 0 1 1 0 1 1 1.44375
0 0 0 1 1 1 0 0 1.43750
16
FN6839.2
September 7, 2010