English
Language : 

ICS859S0212I Datasheet, PDF (13/23 Pages) Integrated Device Technology – Propagation delay
ICS859S0212I Data Sheet
2:2, DIFFERENTIAL-TO-LVPECL/LVDS CLOCK MULTIPLEXER
Applications Information
Recommendations for Unused Input and Output Pins
Inputs:
PCLK/nPCLK Inputs
For applications not requiring the use of a differential input, both the
PCLK and nPCLK pins can be left floating. Though not required, but
for additional protection, a 1k resistor can be tied from PCLK to
ground.
LVCMOS Control Pins
All control pins have internal pullups or pulldowns; additional
resistance is not required but can be added for additional protection.
A 1k resistor can be used.
Outputs:
LVPECL Outputs
All unused LVPECL output pairs can be left floating. We recommend
that there is no trace attached. Both sides of the differential output
pair should either be left floating or terminated.
LVDS Outputs
All unused LVDS output pairs can be either left floating or terminated
with 100 across. If they are left floating, there should be no trace
attached.
Wiring the Differential Input to Accept Single-Ended Levels
Figure 1 shows how a differential input can be wired to accept single
ended levels. The reference voltage V1= VCC/2 is generated by the
bias resistors R1 and R2. The bypass capacitor (C1) is used to help
filter noise on the DC bias. This bias circuit should be located as
close to the input pin as possible. The ratio of R1 and R2 might need
to be adjusted to position the V1 in the center of the input voltage
swing. For example, if the input clock swing is 2.5V and VCC = 3.3V,
R1 and R2 value should be adjusted to set V1 at 1.25V. The values
below are for when both the single ended swing and VCC are at the
same voltage. This configuration requires that the sum of the output
impedance of the driver (Ro) and the series resistance (Rs) equals
the transmission line impedance. In addition, matched termination at
the input will attenuate the signal in half. This can be done in one of
two ways. First, R3 and R4 in parallel should equal the transmission
line impedance. For most 50 applications, R3 and R4 can be 100.
The values of the resistors can be increased to reduce the loading for
slower and weaker LVCMOS driver. When using single-ended
signaling, the noise rejection benefits of differential signaling are
reduced. Even though the differential input can handle full rail
LVCMOS signaling, it is recommended that the amplitude be
reduced. The datasheet specifies a lower differential amplitude,
however this only applies to differential signals. For single-ended
applications, the swing can be larger, however VIL cannot be less
than -0.3V and VIH cannot be more than VCC + 0.3V. Though some
of the recommended components might not be used, the pads should
be placed in the layout. They can be utilized for debugging purposes.
The datasheet specifications are characterized and guaranteed by
using a differential signal.
VCC
Ro
Driver
VCC
R3
100
RS
Zo = 50 Ohm
Ro + Rs = Zo
R4
100
C1
0.1uF
VCC
VCC
R1
1K
V1
R2
1K
+
Receiv er
-
Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels
ICS859S0212BGI REVISION A JUNE 4, 2012
13
©2012 Integrated Device Technology, Inc.