English
Language : 

EPM9560RC240-15 Datasheet, PDF (20/46 Pages) Altera Corporation – Programmable Logic Device Family
MAX 9000 Programmable Logic Device Family Data Sheet
Programming Sequence
During in-system programming, instructions, addresses, and data are
shifted into the MAX 9000 device through the TDI input pin. Data is
shifted out through the TDO output pin and compared against the
expected data.
Programming a pattern into the device requires the following six ISP
stages. A stand-alone verification of a programmed pattern involves only
stages 1, 2, 5, and 6.
1. Enter ISP. The enter ISP stage ensures that the I/O pins transition
smoothly from user mode to ISP mode. The enter ISP stage requires
1 ms.
2. Check ID. Before any program or verify process, the silicon ID is
checked. The time required to read this silicon ID is relatively small
compared to the overall programming time.
3. Bulk Erase. Erasing the device in-system involves shifting in the
instructions to erase the device and applying one erase pulse of
100 ms.
4. Program. Programming the device in-system involves shifting in the
address and data and then applying the programming pulse to
program the EEPROM cells. This process is repeated for each
EEPROM address.
5. Verify. Verifying an Altera device in-system involves shifting in
addresses, applying the read pulse to verify the EEPROM cells, and
shifting out the data for comparison. This process is repeated for
each EEPROM address.
6. Exit ISP. An exit ISP stage ensures that the I/O pins transition
smoothly from ISP mode to user mode. The exit ISP stage requires
1 ms.
Programming Times
The time required to implement each of the six programming stages can
be broken into the following two elements:
■ A pulse time to erase, program, or read the EEPROM cells.
■ A shifting time based on the test clock (TCK) frequency and the
number of TCK cycles to shift instructions, address, and data into the
device.
20
Altera Corporation