English
Language : 

ACEX1K Datasheet, PDF (12/86 Pages) Altera Corporation – Programmable Logic Device Family
ACEX 1K Programmable Logic Device Family Data Sheet
EABs can be used to implement synchronous RAM, which is easier to use
than asynchronous RAM. A circuit using asynchronous RAM must
generate the RAM write enable signal, while ensuring that its data and
address signals meet setup and hold time specifications relative to the
write enable signal. In contrast, the EAB’s synchronous RAM generates its
own write enable signal and is self-timed with respect to the input or write
clock. A circuit using the EAB’s self-timed RAM must only meet the setup
and hold time specifications of the global clock.
When used as RAM, each EAB can be configured in any of the following
sizes: 256 × 16; 512 × 8; 1,024 × 4; or 2,048 × 2. Figure 5 shows the ACEX 1K
EAB memory configurations.
Figure 5. ACEX 1K EAB Memory Configurations
256 × 16
512 × 8
1,024 × 4
2,048 × 2
Larger blocks of RAM are created by combining multiple EABs. For
example, two 256 × 16 RAM blocks can be combined to form a 256 × 32
block, and two 512 × 8 RAM blocks can be combined to form a
512 × 16 block. Figure 6 shows examples of multiple EAB combination.
Figure 6. Examples of Combining ACEX 1K EABs
256 × 32
256 × 16
512 × 16
512 × 8
256 × 16
512 × 8
12
Altera Corporation