English
Language : 

ADSP-21477 Datasheet, PDF (6/76 Pages) Analog Devices – SHARC Processor
ADSP-21477/ADSP-21478/ADSP-21479
bits within the 48-bit instruction to create more efficient and
compact code. The program sequencer supports fetching these
16-bit and 32-bit instructions from both internal and external
SDRAM memory. This support is not extended to the asynchro-
nous memory interface (AMI). Source modules need to be built
using the VISA option, in order to allow code generation tools
to create these more efficient opcodes.
On-Chip Memory
The processors contain varying amounts of internal RAM and
internal ROM which is shown in Table 3 through Table 5. Each
block can be configured for different combinations of code and
data storage. Each memory block supports single-cycle, inde-
pendent accesses by the core processor and I/O processor.
The processor’s SRAM can be configured as a maximum of
160k words of 32-bit data, 320k words of 16-bit data, 106.7k
words of 48-bit instructions (or 40-bit data), or combinations of
different word sizes up to 5M bits. All of the memory can be
accessed as 16-bit, 32-bit, 48-bit, or 64-bit words. A 16-bit
floating-point storage format is supported that effectively dou-
bles the amount of data that may be stored on-chip. Conversion
between the 32-bit floating-point and 16-bit floating-point
formats is performed in a single instruction. While each mem-
ory block can store combinations of code and data, accesses are
most efficient when one block stores data using the DM bus for
transfers, and the other block stores instructions and data using
the PM bus for transfers.
Using the DM bus and PM buses, with one bus dedicated to a
memory block, assures single-cycle execution with two data
transfers. In this case, the instruction must be available in the
cache.
The memory maps in Table 3 through Table 5 display the inter-
nal memory address space of the processors. The 48-bit space
section describes what this address range looks like to an
instruction that retrieves 48-bit memory. The 32-bit section
describes what this address range looks like to an instruction
that retrieves 32-bit memory.
Table 3. ADSP-21477 Internal Memory Space, 2M bits
IOP Registers 0x0000 0000–0x0003 FFFF
Long Word (64 Bits)
Extended Precision Normal or
Instruction Word (48 Bits)
Block 0 ROM (Reserved)
0x0004 0000–0x0004 7FFF
Block 0 ROM (Reserved)
0x0008 0000–0x0008 AAA9
Reserved
0x0004 8000–0x0004 8FFF
Reserved
0x0008 AAAA–0x0008 BFFF
Block 0 SRAM
Block 0 SRAM
0x0004 9000–0x0004 BFFF
0x0008 C000–0x0008 FFFF
Reserved
Reserved
0x0004 C000–0x0004 FFFF
0x0009 000–0x0009 5554
Block 1 ROM (Reserved)
Block 1 ROM (Reserved)
0x0005 0000–0x0005 7FFF
0x000A 0000–0x000A AAA9
Reserved
Reserved
0x0005 8000–0x0005 8FFF
0x000A AAAA–0x000A BFFF
Block 1 SRAM
Block 1 SRAM
0x0005 9000–0x0005 BFFF
0x000A C000–0x000A FFFF
Reserved
Reserved
0x0005 C000–0x0005 FFFF
0x000B 0000–0x000B 5554
Block 2 SRAM
Block 2 SRAM
0x0006 0000–0x0006 0FFF
0x000C 0000–0x000C 1554
Reserved
Reserved
0x0006 1000– 0x0006 FFFF
0x000C 1555–0x000D 5554
Block 3 SRAM
Block 3 SRAM
0x0007 0000–0x0007 0FFF
0x000E 0000–0x000E 1554
Reserved
Reserved
0x0007 1000–0x0007 FFFF
0x000E 1555–0x000F 5554
Normal Word (32 Bits)
Block 0 ROM (Reserved)
0x0008 0000–0x0008 FFFF
Reserved
0x0009 0000–0x0009 1FFF
Block 0 SRAM
0x0009 2000–0x0009 7FFF
Reserved
0x0009 8000–0x0009 FFFF
Block 1 ROM (Reserved)
0x000A 0000–0x000AFFFF
Reserved
0x000B 0000–0x000B 1FFF
Block 1 SRAM
0x000B 2000–0x000B 7FFF
Reserved
0x000B 8000–0x000B FFFF
Block 2 SRAM
0x000C 0000–0x000C 1FFF
Reserved
0x000C 2000–0x000D FFFF
Block 3 SRAM
0x000E 0000–0x000E 1FFF
Reserved
0x000E 2000–0x000F FFFF
Short Word (16 Bits)
Block 0 ROM (Reserved)
0x0010 0000–0x0011 FFFF
Reserved
0x0012 0000–0x0012 FFFF
Block 0 SRAM
0x0012 4000–0x0012 FFFF
Reserved
0x0013 0000–0x0013 FFFF
Block 1 ROM (Reserved)
0x0014 0000–0x0015 FFFF
Reserved
0x0016 0000–0x0016 3FFF
Block 1 SRAM
0x0016 4000–0x0016 FFFF
Reserved
0x0017 0000–0x0017 FFFF
Block 2 SRAM
0x0018 0000–0x0018 3FFF
Reserved
0x0018 4000–0x001B FFFF
Block 3 SRAM
0x001C 0000–0x001C 3FFF
Reserved
0x001C 4000–0x001F FFFF
Rev. B | Page 6 of 76 | March 2012