English
Language : 

EVAL-ADF4113EBZ1 Datasheet, PDF (13/28 Pages) Analog Devices – RF PLL Frequency Synthesizers
Data Sheet
PHASE FREQUENCY DETECTOR (PFD) AND
CHARGE PUMP
The PFD takes inputs from the R counter and N counter (N =
BP + A) and produces an output proportional to the phase and
frequency difference between them. Figure 31 is a simplified
schematic. The PFD includes a programmable delay element
that controls the width of the antibacklash pulse. This pulse
ensures that there is no dead zone in the PFD transfer function
and minimizes phase noise and reference spurs. Two bits in the
reference counter latch, ABP2 and ABP1, control the width of
the pulse. See Table 7.
HI
R DIVIDER
UP
D1
Q1
U1
CLR1
VP CHARGE
PUMP
PROGRAMMABLE
DELAY
U3
ABP1
ABP2
HI
N DIVIDER
CLR2
DOWN
D2
Q2
U2
CP
CPGND
R DIVIDER
N DIVIDER
CP OUTPUT
Figure 31. PFD Simplified Schematic and Timing (In Lock)
MUXOUT AND LOCK DETECT
The output multiplexer on the ADF4110 family allows the user
to access various internal points on the chip. The state of
MUXOUT is controlled by M3, M2, and M1 in the function
latch. Table 9 shows the full truth table. Figure 32 shows the
MUXOUT section in block diagram form.
ADF4110/ADF4111/ADF4112/ADF4113
Lock Detect
MUXOUT can be programmed for two types of lock detect:
digital lock detect and analog lock detect.
Digital lock detect is active high. When LDP in the R counter
latch is set to 0, digital lock detect is set high when the phase
error on three consecutive phase detector (PD) cycles is less
than 15 ns. With LDP set to 1, five consecutive cycles of less
than 15 ns are required to set the lock detect. It stays high until
a phase error greater than 25 ns is detected on any subsequent
PD cycle.
The N-channel open-drain analog lock detect should be
operated with a 10 kΩ nominal external pull-up resistor. When
lock has been detected, this output is high with narrow low-
going pulses.
DVDD
ANALOG LOCK DETECT
DIGITAL LOCK DETECT
R COUNTER OUTPUT
N COUNTER OUTPUT
SDOUT
MUX
CONTROL
MUXOUT
Figure 32. MUXOUT Circuit
DGND
INPUT SHIFT REGISTER
The ADF4110 family digital section includes a 24-bit input shift
register, a 14-bit R counter, and a 19-bit N counter comprised of
a 6-bit A counter and a 13-bit B counter. Data is clocked into
the 24-bit shift register on each rising edge of CLK MSB first.
Data is transferred from the shift register to one of four latches
on the rising edge of LE. The destination latch is determined by
the state of the two control bits (C2, C1) in the shift register.
These are the two LSBs, DB1 and DB0, as shown in Figure 2.
The truth table for these bits is shown in Table 5.
Table 6 shows a summary of how the latches are programmed.
Table 5. C2, C1 Truth Table
Control Bits
C2
C1
Data Latch
0
0
R Counter
0
1
N Counter (A and B)
1
0
Function Latch (Including Prescaler)
1
1
Initialization Latch
Rev. F | Page 13 of 28