English
Language : 

XC5VFX130T-2FF1738I Datasheet, PDF (7/13 Pages) Xilinx, Inc – Virtex-5 Family Overview
R
Virtex-5 Family Overview
Virtex-5 FPGA Features
This section briefly describes the features of the Virtex-5 family of FPGAs.
Input/Output Blocks (SelectIO)
IOBs are programmable and can be categorized as follows:
• Programmable single-ended or differential (LVDS)
operation
• Input block with an optional single data rate (SDR) or
double data rate (DDR) register
• Output block with an optional SDR or DDR register
• Bidirectional block
• Per-bit deskew circuitry
• Dedicated I/O and regional clocking resources
• Built-in data serializer/deserializer
The IOB registers are either edge-triggered D-type flip-flops
or level-sensitive latches.
IOBs support the following single-ended standards:
• LVTTL
• LVCMOS (3.3V, 2.5V, 1.8V, 1.5V, and 1.2V)
• PCI (33 and 66 MHz)
• PCI-X
• GTL and GTLP
• HSTL 1.5V and 1.8V (Class I, II, III, and IV)
• HSTL 1.2V (Class 1)
• SSTL 1.8V and 2.5V (Class I and II)
The Digitally Controlled Impedance (DCI) I/O feature can be
configured to provide on-chip termination for each
single-ended I/O standard and some differential I/O
standards.
The IOB elements also support the following differential
signaling I/O standards:
• LVDS and Extended LVDS (2.5V only)
• BLVDS (Bus LVDS)
• ULVDS
• Hypertransport™
• Differential HSTL 1.5V and 1.8V (Class I and II)
• Differential SSTL 1.8V and 2.5V (Class I and II)
• RSDS (2.5V point-to-point)
Two adjacent pads are used for each differential pair. Two or
four IOB blocks connect to one switch matrix to access the
routing resources.
Per-bit deskew circuitry allows for programmable signal
delay internal to the FPGA. Per-bit deskew flexibly provides
fine-grained increments of delay to carefully produce a
range of signal delays. This is especially useful for
synchronizing signal edges in source-synchronous
interfaces.
General purpose I/O in select locations (eight per bank) are
designed to be “regional clock capable” I/O by adding
special hardware connections for I/O in the same locality.
These regional clock inputs are distributed within a limited
region to minimize clock skew between IOBs. Regional I/O
clocking supplements the global clocking resources.
Data serializer/deserializer capability is added to every I/O
to support source-synchronous interfaces. A serial-to-
parallel converter with associated clock divider is included
in the input path, and a parallel-to-serial converter in the
output path.
An in-depth guide to the Virtex-5 FPGA IOB is found in the
Virtex-5 FPGA Tri-Mode Ethernet MAC User Guide.
Configurable Logic Blocks (CLBs)
A Virtex-5 FPGA CLB resource is made up of two slices.
Each slice is equivalent and contains:
• Four function generators
• Four storage elements
• Arithmetic logic gates
• Large multiplexers
• Fast carry look-ahead chain
The function generators are configurable as 6-input LUTs or
dual-output 5-input LUTs. SLICEMs in some CLBs can be
configured to operate as 32-bit shift registers (or 16-bit x 2
shift registers) or as 64-bit distributed RAM. In addition, the
four storage elements can be configured as either
edge-triggered D-type flip-flops or level sensitive latches.
Each CLB has internal fast interconnect and connects to a
switch matrix to access general routing resources.
The Virtex-5 FPGA CLBs are further discussed in the
Virtex-5 FPGA User Guide.
Block RAM
The 36 Kbit true dual-port RAM block resources are
programmable from 32K x 1 to 512 x 72, in various depth
and width configurations. In addition, each 36-Kbit block
can also be configured to operate as two, independent 18-
Kbit dual-port RAM blocks.
Each port is totally synchronous and independent, offering
three “read-during-write” modes. Block RAM is cascadable
to implement large embedded storage blocks. Additionally,
back-end pipeline registers, clock control circuitry, built-in
FIFO support, ECC, and byte write enable features are also
provided as options.
The block RAM feature in Virtex-5 devices is further
discussed in the Virtex-5 FPGA User Guide.
DS100 (v5.0) February 6, 2009
www.xilinx.com
Product Specification
7