English
Language : 

IB0XXQ096T70XX-XX Datasheet, PDF (15/18 Pages) Vicor Corporation – 5:1 Intermediate Bus Converter Module: Up to 750W Output
IB0xxQ096T70xx-xx
Applications Note
Parallel Operation
The IBC will inherently current share when operated in an array.
Arrays may be used for higher power or redundancy in an
application. Current sharing accuracy is maximized when the source
and load impedance presented to each IBC within an array are
equal. The recommended method to achieve matched impedances
is to dedicate common copper planes within the PCB to deliver
and return the current to the array, rather than rely upon traces of
varying lengths. In typical applications the current being delivered
to the load is larger than that sourced from the input, allowing
narrower traces to be utilized on the input side if necessary. The
use of dedicated power planes is, however, preferable.
One or more IBCs in an array may be disabled without adversely
affecting operation or reliability as long as the load does not
exceed the rated power of the enabled IBCs.
The IBC power train and control architecture allow bi-directional
power transfer, including reverse power processing from the IBC
output to its input. The IBC’s ability to process power in reverse
improves the IBC transient response to an output load dump.
Thermal Considerations
The temperature distribution of the VI Brick® can vary significantly
with its input / output operating conditions, thermal management
and environmental conditions. Although the PCB is UL rated to
130°C, it is recommended that PCB temperatures be maintained
at or below 125°C. For maximum long term reliability, lower
PCB temperatures are recommended for continuous operation,
however, short periods of operation at 125°C will not negatively
impact performance or reliability.
WARNING: Thermal and voltage hazards. The IBC can operate
with surface temperatures and operating voltages that may be
hazardous to personnel. Ensure that adequate protection is in place
to avoid inadvertent contact.
Input Impedance Recommendations
To take full advantage of the IBC capabilities, the impedance
presented to its input terminals must be low from DC to
approximately 5MHz. The source should exhibit low inductance
and should have a critically damped response. If the interconnect
inductance is excessive, the IBC input pins should be bypassed with
an RC damper (e.g., 47μF in series with 0.3Ω) to retain low source
impedance and proper operation. Given the wide bandwidth of
the IBC, the source response is generally the limiting factor in the
overall system response.
Anomalies in the response of the source will appear at the output
of the IBC multiplied by its K factor. The DC resistance of the
source should be kept as low as possible to minimize voltage
deviations. This is especially important if the IBC is operated near
low or high line as the overvoltage/undervoltage detection circuitry
could be activated.
Input Fuse Recommendations
The IBC is not internally fused in order to provide flexibility in
configuring power systems. However, input line fusing of VI Bricks
must always be incorporated within the power system. A fast
acting fuse should be placed in series with the +IN port. See safety
agency approvals.
Application Notes
For IBC and VI Brick application notes on soldering,
thermal management, board layout, and system design
visit www.vicorpower.com.
IBC Module
Page 15 of 18
Rev 1.2
09/2016
vicorpower.com
800 927.9474