English
Language : 

TC244 Datasheet, PDF (4/19 Pages) Texas Instruments – 786- × 488-PIXEL CCD IMAGE SENSOR
TC244
786- × 488-PIXEL CCD IMAGE SENSOR
SOCS016B – NOVEMBER 1989 – REVISED DECEMBER 1991
image-sensing and storage areas
Figure 1 and Figure 2 show cross sections with potential well diagrams and top views of image-sensing and
storage-area elements. As light enters the silicon in the image-sensing area, free electrons are generated and
collected in the potential wells of the sensing elements. During this time, blooming protection is activated by
applying a burst of pulses to the antiblooming gate inputs every horizontal blanking interval. This prevents
blooming caused by the spilling of charge from overexposed elements into neighboring elements. After
integration is complete, the signal charge is transferred into the storage area.
There are 29 full columns and one half-column of elements at the right edge of the image-sensing area that are
shielded from incident light; these elements provide the dark reference used in subsequent video processing
circuits to restore the video black level. There are also one full column and one half-column of light-shielded
elements at the left edge of the image-sensing area and two lines of light-shielded elements between the
image-sensing and image-storage areas (the latter prevent charge leakage from the image-sensing area into
the image-storage area).
multiplexer with transfer gates and serial registers
The color sensitivity of the TC244 is obtained by laminating a color stripe filter on top of the image-sensing area
and aligning it precisely with vertical columns of sensing elements. This separates columns into three groups
corresponding to the RGB colors used in the filter. The function of the multiplexer and transfer gates is to transfer
the charge line by line from the columns into the corresponding serial registers and prepare it for readout.
Figure 3 illustrates the layout of the multiplexing gate that vertically separates the pixels for input into the serial
registers. Figure 4 shows the layout of the interface region between the serial-register gates and the transfer
gates. The multiplexing is activated during the horizontal blanking interval by applying appropriate pulses to the
transfer gates and serial registers. The required pulse timing is shown in Figure 5. A drain has also been
included in this area to provide the capability to quickly clear the image-sensing and storage areas of unwanted
charge. Such charge can accumulate in the imager during the start-up of operation or under special
circumstances when nonstandard TV operation is desired.
correlated clamp-sample-and-hold amplifier with charge-detection nodes
Figure 6 illustrates the correlated clamp-sample-and-hold amplifier circuit. Charge is converted into a video
signal by transferring the charge onto a floating diffusion structure in detection node1 that is connected to the
gate of MOS transistor Q1. The proportional charge-induced signal is then processed by the circuit shown in
Figure 6. This circuit consists of a low-pass filter formed by Q1 and C2, coupling capacitor C1, dummy detection
node 2, which restores the dc bias on the gate of Q3, sampling transistor Q5, holding capacitor C3, and output
buffer Q6. Transistors Q2, Q4, and Q7 are current sources for each corresponding stage of the amplifier. The
parameters of this high-performance signal-processing amplifier have been optimized to minimize noise and
maximize the video signal.
The signal processing begins with a reset of detection node 1 and restoration of the dc bias on the gate of Q3
through the clamping function of dummy detection node 2. After the clamping is completed, the new charge
packet is transferred onto detection node 1. The resulting signal is sampled by the sampling transistor Q5 and
is stored on the holding capacitor C3. This process is repeated periodically and is correlated to the charge
transfer in the registers. The correlation is achieved automatically since the same clock lines used in registers
φ-S2 and φ-S3 for charge transport serve for reset and sample. The multiple use of the clock lines significantly
reduces the number of signals required to operate the sensor. The amplifier also contains an internal voltage
reference generator that provides the reference bias for the reset and clamp transistors. The detection nodes
and the corresponding amplifiers are located some distance away from the edge of the storage area. Therefore,
eleven dummy elements are incorporated at the end of each serial register to span the distance. The location
of the dummy elements, which are considered to be part of the amplifiers, is shown in the functional block
diagram.
2-4
• POST OFFICE BOX 655303 DALLAS, TEXAS 75265