English
Language : 

TM4C1233C3PM Datasheet, PDF (220/1214 Pages) Texas Instruments – Tiva Microcontroller
System Control
5.2.6.1
5.2.6.2
Important: To support legacy software, the RCGCn, SCGCn, and DCGCn registers are available
at offsets 0x100 - 0x128. A write to any of these legacy registers also writes the
corresponding bit in the peripheral-specific RCGCx, SCGCx, and DCGCx registers.
Software must use the peripheral-specific registers to support modules that are not
present in the legacy registers. It is recommended that new software use the new
registers and not rely on legacy operation.
If software uses a peripheral-specific register to write a legacy peripheral (such as
TIMER0), the write causes proper operation, but the value of that bit is not reflected in
the legacy register. Any bits that are changed by writing to a legacy register can be
read back correctly with a read of the legacy register. If software uses both legacy and
peripheral-specific register accesses, the peripheral-specific registers must be accessed
by read-modify-write operations that affect only peripherals that are not present in the
legacy registers. In this manner, both the peripheral-specific and legacy registers have
coherent information.
There are four levels of operation for the microcontroller defined as:
■ Run mode
■ Sleep mode
■ Deep-Sleep mode
■ Hibernate mode
The following sections describe the different modes in detail.
Caution – If the Cortex-M4F Debug Access Port (DAP) has been enabled, and the device wakes from
a low power sleep or deep-sleep mode, the core may start executing code before all clocks to peripherals
have been restored to their Run mode configuration. The DAP is usually enabled by software tools
accessing the JTAG or SWD interface when debugging or flash programming. If this condition occurs,
a Hard Fault is triggered when software accesses a peripheral with an invalid clock.
A software delay loop can be used at the beginning of the interrupt routine that is used to wake up a
system from a WFI (Wait For Interrupt) instruction. This stalls the execution of any code that accesses
a peripheral register that might cause a fault. This loop can be removed for production software as the
DAP is most likely not enabled during normal execution.
Because the DAP is disabled by default (power on reset), the user can also power cycle the device. The
DAP is not enabled unless it is enabled through the JTAG or SWD interface.
Run Mode
In Run mode, the microcontroller actively executes code. Run mode provides normal operation of
the processor and all of the peripherals that are currently enabled by the peripheral-specific RCGC
registers. The system clock can be any of the available clock sources including the PLL.
Sleep Mode
In Sleep mode, the clock frequency of the active peripherals is unchanged, but the processor and
the memory subsystem are not clocked and therefore no longer execute code. Sleep mode is entered
by the Cortex-M4F core executing a WFI (Wait for Interrupt) instruction. Any properly configured
interrupt event in the system brings the processor back into Run mode. See “Power
Management” on page 107 for more details.
220
June 12, 2014
Texas Instruments-Production Data