English
Language : 

OPA187_17 Datasheet, PDF (18/35 Pages) Texas Instruments – Drift, Low Power, Rail-to-Rail Output 36-V Operational Amplifiers Zero-Drift Series
OPA187, OPA2187, OPA4187
SBOS807 – DECEMBER 2016
G = 1, RL = 10 kΩ, 10-mV Output Step
www.ti.com
70
RISO = 0 Ÿ
60
RISO = 25 Ÿ
RISO = 50 Ÿ
50
40
30
20
10
10
100
Capacitive Load (pF)
C004
Figure 39. Small-Signal Overshoot Versus Capacitive Load
7.3.7 Electrical Overstress
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.
These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from
accidental ESD events both before and during product assembly.
Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is
helpful. See Figure 40 for an illustration of the ESD circuits contained in the OPAx187 (indicated by the dashed
line area). The ESD protection circuitry involves several current-steering diodes connected from the input and
output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device
internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit
operation.
An ESD event produces a short-duration, high-voltage pulse that is transformed into a short-duration, high-
current pulse while discharging through a semiconductor device. The ESD protection circuits are designed to
provide a current path around the operational amplifier core to prevent damage. The energy absorbed by the
protection circuitry is then dissipated as heat.
When an ESD voltage develops across two or more amplifier device pins, current flows through one or more
steering diodes. Depending on the path that the current takes, the absorption device may activate. The
absorption device has a trigger, or threshold voltage, that is above the normal operating voltage of the OPAx187
but below the device breakdown voltage level. When this threshold is exceeded, the absorption device quickly
activates and clamps the voltage across the supply rails to a safe level.
When the operational amplifier connects into a circuit (as shown in Figure 40), the ESD protection components
are intended to remain inactive and do not become involved in the application circuit operation. However,
circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin. Should
this condition occur, there is a risk that some internal ESD protection circuits may be biased on, and conduct
current. Any such current flow occurs through steering-diode paths and rarely involves the absorption device.
Figure 40 shows a specific example where the input voltage, VIN, exceeds the positive supply voltage (+VS) by
500 mV or more. Much of what happens in the circuit depends on the supply characteristics. If +VS can sink the
current, one of the upper input steering diodes conducts and directs current to +VS. Excessively high current
levels can flow with increasingly higher VIN. As a result, the data sheet specifications recommend that
applications limit the input current to 10 mA.
If the supply is not capable of sinking the current, VIN may begin sourcing current to the operational amplifier, and
then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to
levels that exceed the operational amplifier absolute maximum ratings.
18
Submit Documentation Feedback
Copyright © 2016, Texas Instruments Incorporated
Product Folder Links: OPA187 OPA2187 OPA4187