English
Language : 

LMH6703_16 Datasheet, PDF (17/26 Pages) Texas Instruments – 1.2 GHz, Low Distortion Op Amp with Shutdown
www.ti.com
LMH6703
SNOSAF2E – FEBRUARY 2005 – REVISED MAY 2016
10 Power Supply Recommendations
The LMH6703 can operate off a single supply or with dual supplies as long as the input CM voltage range
(CMIR) has the required headroom to either supply rail. Supplies should be decoupled with low inductance, often
ceramic, capacitors to ground less than 0.5 inches from the device pins. The use of ground plane is
recommended, and as in most high speed devices, it is advisable to remove ground plane close to device
sensitive pins such as the inputs.
11 Layout
11.1 Layout Guidelines
Whenever questions about layout arise, use the evaluation board (see Table 1) as a guide. The LMH730216 is
the evaluation board for SOT-23-6 samples and the LMH730227 is the evaluation board for SOIC samples.
To reduce parasitic capacitances, ground and power planes should be removed near the input and output pins.
Components in the feedback path should be placed as close to the device as possible to minimize parasitic
capacitance. For long signal paths controlled impedance lines should be used, along with impedance matching
elements at both ends.
Bypass capacitors should be placed as close to the device as possible. Bypass capacitors from each voltage rail
to ground are applied in pairs. The larger electrolytic bypass capacitors can be located further from the device,
the smaller ceramic bypass capacitors should be placed as close to the device as possible. In Figure 29 and
Figure 30, CSS is optional, but is recommended for best second order harmonic distortion.
Generally, a good high frequency layout will keep power supply and ground traces away from the inverting input
and output pins. Parasitic capacitances on these nodes to ground will cause frequency response peaking and
possible circuit oscillations. See Frequent Faux Pas in Applying Wideband Current Feedback Amplifiers,
Application Note OA-15 (SNOA367). The evaluation board(s) is a good example of high frequency layout
techniques as a reference.
General high-speed, signal-path layout suggestions include:
• Continuous ground planes are preferred for signal routing, as shown in Figure 33 and Figure 34, with
matched impedance traces for longer runs. However, open up both ground and power planes around the
capacitive sensitive input and output device pins.
• Use good, high-frequency decoupling capacitors (0.1 μF) on the ground plane at the device power pins as
shown in Figure 33. Higher value capacitors (2.2 μF) are required, but may be placed further from the device
power pins and shared among devices. For best high-frequency decoupling, consider X2Y supply-decoupling
capacitors that offer a much higher self-resonance frequency over standard capacitors.
• When using differential signal routing over any appreciable distance, use microstrip layout techniques with
matched impedance traces.
• The input summing junction is very sensitive to parasitic capacitance. Connect any Rf, and Rg elements into
the summing junction with minimal trace length to the device pin side of the resistor, as shown in Figure 34.
The other side of these elements can have more trace length if needed to the source or to ground.
DEVICE
LMH6703MF
LMH6703MA
Table 1. Evaluation Boards
PACKAGE
SOT-23-6
SOIC
EVALUATION BOARD PART NUMBER
LMH730216
LMH730227
Copyright © 2005–2016, Texas Instruments Incorporated
Product Folder Links: LMH6703
Submit Documentation Feedback
17