English
Language : 

ADS58B19IRGZT Datasheet, PDF (1/69 Pages) Texas Instruments – 11-Bit, 200MSPS/9-Bit, 250MSPS, Ultralow-Power ADCs with Analog Buffer
ADS58B18
ADS58B19
www.ti.com
SBAS487D – NOVEMBER 2009 – REVISED JANUARY 2011
11-Bit, 200MSPS/9-Bit, 250MSPS,
Ultralow-Power ADCs with Analog Buffer
Check for Samples: ADS58B18, ADS58B19
FEATURES
1
•23 ADS58B18: 11-Bit, 200MSPS
• ADS58B19: 9-Bit, 250MSPS
• Integrated High-Impedance Analog Input
Buffer
• Ultralow Power:
– Analog Power: 258mW at 200MSPS
– I/O Power: 69mW (DDR LVDS, low LVDS
swing)
• High Dynamic Performance:
– ADS58B18: 66dBFS SNR and 81dBc SFDR
at 150MHz
– ADS58B19: 55.7dBFS SNR and 76dBc
SFDR at 150MHz
• Enhanced SNR Using TI-Proprietary SNRBoost
Technology (ADS58B18 Only)
– –77.7dBFS SNR in 20MHz Bandwidth
• Dynamic Power Scaling with Sample Rate
• Output Interface:
– Double Data Rate (DDR) LVDS with
Programmable Swing and Strength
– Standard Swing: 350mV
– Low Swing: 200mV
– Default Strength: 100Ω Termination
– 2x Strength: 50Ω Termination
– 1.8V Parallel CMOS Interface Also
Supported
• Programmable Gain for SNR/SFDR Trade-Off
• DC Offset Correction
• Supports Low Input Clock Amplitude
• Package: QFN-48 (7mm × 7mm)
DESCRIPTION
The ADS58B18/B19 are members of the ultralow
power ADS4xxx analog-to-digital converter (ADC)
family that features integrated analog buffers and
SNRBoost technology. The ADS58B18 and
ADS58B19 are 11-bit and 9-bit ADCs with sampling
rates up to 200MSPS and 250MSPS, respectively.
Innovative design techniques are used to achieve
high dynamic performance while consuming
extremely low power. The analog input pins have
buffers with constant performance and input
impedance across a wide frequency range. This
architecture makes these parts well-suited for
multi-carrier, wide bandwidth communications
applications such as PA linearization.
The ADS58B18 uses TI-proprietary SNRBoost
technology that can be used to overcome SNR
limitation as a result of quantization noise for
bandwidths less than Nyquist (fS/2).
Both devices have gain options that can be used to
improve SFDR performance at lower full-scale input
ranges, especially at very high input frequencies.
They also include a dc offset correction loop that can
be used to cancel the ADC offset. At lower sampling
rates, the ADC automatically operates at scaled-down
power with no loss in performance.
These devices support both double data rate (DDR)
low-voltage differential signaling (LVDS) and parallel
CMOS digital output interfaces. The low data rate of
the DDR LVDS interface (maximum 500Mbps) makes
it possible to use low-cost field-programmable gate
array (FPGA)-based receivers. They have a
low-swing LVDS mode that can be used to further
reduce the power consumption. The strength of the
LVDS output buffers can also be increased to support
50Ω differential termination.
The ADS58B18/B19 are both available in a compact
QFN-48 package and specified over the industrial
temperature range (–40°C to +85°C).
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PowerPAD is a trademark of Texas Instruments Incorporated.
2
All other trademarks are the property of their respective owners.
3
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
© 2009–2011, Texas Instruments Incorporated