English
Language : 

BQ24100 Datasheet, PDF (19/26 Pages) Texas Instruments – SYNCHRONOUS SWITCHMODE, LI-ION AND LI-POL CHARGE MANAGEMENT IC WITH INTEGRATED POWERFETS
www.ti.com
bq24100, bq24103
bq24105, bq24108
bq24113, bq24115
SLUS606C – JUNE 2004 – REVISED SEPTEMBER 2005
THERMAL CONSIDERATIONS
The SWITCHER is packaged in a thermally enhanced MLP package. The package includes a thermal pad to
provide an effective thermal contact between the IC and the printed circuit board (PCB). Full PCB design
guidelines for this package are provided in the application report entitled: QFN/SON PCB Attachment
(SLUA271).
The most common measure of package thermal performance is thermal impedance (ΘJA) measured (or modeled)
from the chip junction to the air surrounding the package surface (ambient). The mathematical expression for ΘJA
is:
q (JA)
+
TJ
*
P
TA
(12)
Where:
TJ = chip junction temperature
TA = ambient temperature
P = device power dissipation
Factors that can greatly influence the measurement and calculation of ΘJA include:
• Whether or not the device is board mounted
• Trace size, composition, thickness, and geometry
• Orientation of the device (horizontal or vertical)
• Volume of the ambient air surrounding the device under test and airflow
• Whether other surfaces are in close proximity to the device being tested
The device power dissipation, P, is a function of the charge rate and the voltage drop across the internal power
FET. It can be calculated from the following equation:
P = [Vin × lin - Vbat × Ibat]
Due to the charge profile of Li-xx batteries, the maximum power dissipation is typically seen at the beginning of
the charge cycle when the battery voltage is at its lowest. (See Figure 6.)
PCB LAYOUT CONSIDERATION
It is important to pay special attention to the PCB layout. The following provides some guidelines:
• To obtain optimal performance, the power input capacitors, connected from input to PGND, should be placed
as close as possible to the bqSWITCHER. The output inductor should be placed directly above the IC and
the output capacitor connected between the inductor and PGND of the IC. The intent is to minimize the
current path loop area from the OUT pin through the LC filter and back to the GND pin. The sense resistor
should be adjacent to the junction of the inductor and output capacitor. Route the sense leads connected
across the R(SNS) back to the IC, close to each other (minimize loop area) or on top of each other on adjacent
layers (do not route the sense leads through a high-current path). Use an optional capacitor downstream
from the sense resistor if long (inductive) battery leads are used.
• Place all small-signal components (CTTC, RSET1/2 and TS) close to their respective IC pin (do not place
components such that routing interrupts power stage currents). All small control signals should be routed
away from the high current paths.
• The PCB should have a ground plane (return) connected directly to the return of all components through vias
(3 vias per capacitor for power-stage capacitors, 3 vias for the IC PGND, 1 via per capacitor for small-signal
components). A star ground design approach is typically used to keep circuit block currents isolated
(high-power/low-power small-signal) which reduces noise-coupling and ground-bounce issues. A single
ground plane for this design gives good results. With this small layout and a single ground plane, there is not
a ground-bounce issue, and having the components segregated minimizes coupling between signals.
• The high-current charge paths into IN and from the OUT pins must be sized appropriately for the maximum
charge current in order to avoid voltage drops in these traces. The PGND pins should be connected to the
ground plane to return current through the internal low-side FET. The thermal vias in the IC PowerPAD™
provide the return-path connection.
• The bqSWITCHER is packaged in a thermally enhanced MLP package. The package includes a thermal pad
19