English
Language : 

LM3485_15 Datasheet, PDF (14/24 Pages) Texas Instruments – Hysteretic PFET Buck Controller
LM3485
SNVS178G – JANUARY 2002 – REVISED FEBRUARY 2013
www.ti.com
PROGRAMMING THE CURRENT LIMIT (RADJ)
The current limit is determined by connecting a resistor (RADJ) between input voltage and the ADJ pin.
RADJ = IIND_PEAK * RDSON/ICL_ADJ
(13)
where:
RDSON : Drain-Source ON resistance of the external PFET
ICL_ADJ : 3.0µA minimum
IIND_PEAK = ILOAD + IRIPPLE/2
Using the minimum value for ICL_ADJ (3.0µA) ensures that the current limit threshold will be set higher than the
peak inductor current.
The RADJ value must be selected to ensure that the voltage at the ADJ pin does not fall below 3.5V. With this in
mind, RADJ_MAX = (VIN-3.5)/7µA. If a larger RADJ value is needed to set the desired current limit, either use a
PFET with a lower RDSON, or use a current sense resistor as shown in Figure 6.
The current limit function can be disabled by connecting the ADJ pin to ground and ISENSE to VIN.
CATCH DIODE SELECTION (D1)
The important parameters for the catch diode are the peak current, the peak reverse voltage, and the average
power dissipation. The average current through the diode can be calculated as following.
ID_AVE = IOUT* (1 − D)
(14)
The off state voltage across the catch diode is approximately equal to the input voltage. The peak reverse
voltage rating must be greater than input voltage. In nearly all cases a Schottky diode is recommended. In low
output voltage applications a low forward voltage provides improved efficiency. For high temperature
applications, diode leakage current may become significant and require a higher reverse voltage rating to
achieve acceptable performance.
P-CHANNEL MOSFET SELECTION (Q1)
The important parameters for the PFET are the maximum Drain-Source voltage (VDS), the on resistance (RDSON),
Current rating, and the input capacitance.
The voltage across the PFET when it is turned off is equal to the sum of the input voltage and the diode forward
voltage. The VDS must be selected to provide some margin beyond the input voltage.
PFET drain current, Id, must be rated higher than the peak inductor current, IIND-PEAK.
Depending on operating conditions, the PGATE voltage may fall as low as VIN - 8.3V. Therefore, a PFET must
be selected with a VGS greater than the maximum PGATE swing voltage.
As input voltage decreases below 9V, PGATE swing voltage may also decrease. At 5.0V input the PGATE will
swing from VIN to VIN - 4.6V. To ensure that the PFET turns on quickly and completely, a low threshold PFET
should be used when the input voltage is less than 7V.
However, PFET switching losses will increase as the VGS threshold decreases. Therefore, whenever possible, a
high threshold PFET should be selected. Total power loss in the FET can be approximated using the following
equation:
PDswitch = RDSON*IOUT2*D + F*IOUT*VIN*(ton + toff)/2
(15)
where:
ton = FET turn on time
toff = FET turn off time
A value of 10ns to 20ns is typical for ton and toff.
A PFET should be selected with a turn on rise time of less than 100ns. Slower rise times will degrade efficiency,
can cause false current limiting, and in extreme cases may cause abnormal spiking at the PGATE pin.
14
Submit Documentation Feedback
Product Folder Links: LM3485
Copyright © 2002–2013, Texas Instruments Incorporated