English
Language : 

DAC8531 Datasheet, PDF (12/19 Pages) Texas Instruments – Low-Power, Rail-to-Rail Output, 16-Bit Serial Input DIGITAL-TO-ANALOG CONVERTER
OUTPUT AMPLIFIER
The output buffer amplifier is capable of generating rail-to-rail
voltages on its output which gives an output range of
0V to VDD. It is capable of driving a load of 2kΩ in parallel with
1000pF to GND. The source and sink capabilities of the
output amplifier can be seen in the typical curves. The slew
rate is 1V/µs with a full-scale settling time of 8µs with the
output unloaded.
The inverting input of the output amplifier is brought out to the
VFB pin. This allows for better accuracy in critical applications
by tying the VFB point and the amplifier output together
directly at the load. Other signal conditioning circuitry
may also be connected between these points for specific
applications.
SERIAL INTERFACE
The DAC8531 has a three-wire serial interface (SYNC,
SCLK, and DIN), which is compatible with SPI, QSPI, and
Microwire interface standards as well as most DSPs. See the
Serial Write Operation timing diagram for an example of a
typical write sequence.
The write sequence begins by bringing the SYNC line LOW.
Data from the DIN line is clocked into the 24-bit shift register
on the falling edge of SCLK. The serial clock frequency can
be as high as 30MHz, making the DAC8531 compatible with
high-speed (DSPs). On the 24th falling edge of the serial
clock, the last data bit is clocked in and the programmed
function is executed (i.e., a change in DAC register contents
and/or a change in the mode of operation).
At this point, the SYNC line may be kept LOW or brought
HIGH. In either case, it must be brought HIGH for a minimum
of 33ns before the next write sequence so that a falling edge
of SYNC can initiate the next write sequence. Since the
SYNC buffer draws more current when the SYNC signal is
HIGH than it does when it is LOW, SYNC should be idled
LOW between write sequences for lowest power operation of
the part. As mentioned above, it must be brought HIGH again
just before the next write sequence.
INPUT SHIFT REGISTER
The input shift register is 24 bits wide, as shown in Figure 3.
The first six bits are “don’t cares”. The next two bits (PD1 and
PD0) are control bits that control which mode of operation the
part is in (normal mode or any one of three power-down
modes). There is a more complete description of the various
modes in the Power-Down Modes section. The next 16 bits
are the data bits. These are transferred to the DAC register
on the 24th falling edge of SCLK.
SYNC INTERRUPT
In a normal write sequence, the SYNC line is kept LOW for
at least 24 falling edges of SCLK and the DAC is updated on
the 24th falling edge. However, if SYNC is brought HIGH
before the 24th falling edge, this acts as an interrupt to the
write sequence. The shift register is reset and the write
sequence is seen as invalid. Neither an update of the DAC
register contents or a change in the operating mode occurs,
as shown in Figure 4.
POWER-ON RESET
The DAC8531 contains a power-on reset circuit that controls
the output voltage during power-up. On power-up, the DAC
register is filled with zeros and the output voltage is 0V; it
remains there until a valid write sequence is made to the
DAC. This is useful in applications where it is important to
know the state of the output of the DAC while it is in the
process of powering up.
DB23
DB0
X X X X X X PD1 PD0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
FIGURE 3. Data Input Register.
CLK
SYNC
DIN
24th Falling Edge
DB23
DB0
Invalid Write Sequence:
SYNC HIGH before 24th Falling Edge
FIGURE 4. SYNC Interrupt Facility.
24th Falling Edge
DB23
DB0
Valid Write Sequence: Output Updates
on the 24th Falling Edge
12
DAC8531
www.ti.com
SBAS192B