English
Language : 

S-817 Datasheet, PDF (9/50 Pages) Seiko Instruments Inc – SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
Rev.3.0_00
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
„ Electrical Characteristics
1. S-817A series
Table 9
(Ta=25°C unless otherwise specified)
Measur-
Item
Symbol
Conditions
Min. Typ. Max. Units ement
circuits
Output voltage *1
Output current *2
Dropout voltage *3
Line regulation 1
Line regulation 2
Load regulation
VOUT(E) VIN=VOUT(S)+2 V, IOUT=10 mA
VOUT(S)
× 0.98
VOUT(S)
VOUT(S)
× 1.02
V
1
IOUT
VOUT(S)+2 V 1.1 V ≤ VOUT(S) ≤ 1.9 V 20
−
− mA
3
≤ VIN≤10 V 2.0 V ≤ VOUT(S) ≤ 2.9 V 35
−
−
3.0 V ≤ VOUT(S) ≤ 3.9 V 50
−
−
4.0 V ≤ VOUT(S) ≤ 4.9 V 65
−
−
5.0 V ≤ VOUT(S) ≤ 6.0 V 75
−
−
Vdrop IOUT = 10 mA1.1 V ≤ VOUT(S) ≤ 1.4 V − 0.92 1.58
V
1
1.5 V ≤ VOUT(S) ≤ 1.9 V − 0.58 0.99
2.0 V ≤ VOUT(S) ≤ 2.4 V − 0.40 0.67
2.5 V ≤ VOUT(S) ≤ 2.9 V − 0.31 0.51
3.0 V ≤ VOUT(S) ≤ 3.4 V − 0.25 0.41
3.5 V ≤ VOUT(S) ≤ 3.9 V − 0.22 0.35
4.0 V ≤ VOUT(S) ≤ 4.4 V − 0.19 0.30
4.5 V ≤ VOUT(S) ≤ 4.9 V − 0.18 0.27
5.0 V ≤ VOUT(S) ≤ 5.4 V − 0.16 0.25
5.5 V ≤ VOUT(S) ≤ 6.0 V − 0.15 0.23
∆ VOUT1
VOUT(S) + 1 V ≤ VIN ≤ 10 V,
IOUT = 1 mA
−
5
20 mV
∆ VOUT2
VOUT(S) + 1 V ≤ VIN ≤ 10 V,
IOUT = 1 µA
−
5
20
∆ VOUT3
VIN=VOUT(S)+ 1.1 V ≤ VOUT(S) ≤ 1.9 V,
2V
1 µA ≤ IOUT ≤ 10 mA
−
5
20
2.0 V ≤ VOUT(S) ≤ 2.9 V,
1 µA ≤ IOUT ≤ 20 mA
−
10
30
3.0 V ≤ VOUT(S) ≤ 3.9 V,
1 µA ≤ IOUT ≤ 30 mA
−
20
45
4.0 V ≤ VOUT(S) ≤ 4.9 V,
1 µA ≤ IOUT ≤ 40 mA
−
25
65
5.0 V ≤ VOUT(S) ≤ 6.0 V,
1 µA ≤ IOUT ≤ 50 mA
−
35
80
Output voltage
∆VOUT VIN = VOUT(S) + 1 V, IOUT = 10 mA,
temperature coefficient *4 ∆Ta• VOUT −40°C ≤ Ta ≤ 85°C
− ±100 −
ppm
/°C
Current consumption
Input voltage
Short current limit
ISS
VIN = VOUT(S) + 2 V, no load
− 1.2 2.5 µA
2
VIN
−
−
−
10
V
1
IOS
VIN = VOUT(S) + 2 V, VOUT pin = 0 V
− 40
−
mA
3
*1. VOUT(S): Specified output voltage
VOUT(E): Effective output voltage
i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V.
*2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current.
*3. Vdrop = VIN1−(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E)
after gradually decreasing input voltage.
*4. Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation.
[ ] [ ] [ ] ∆VOUT mV/°C *1 = VOUT(S) V *2 × ∆VOUT ppm/°C *3 ÷ 1000
∆Ta
∆Ta • VOUT
*1. Temperature change ratio of the output voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
Seiko Instruments Inc.
9