English
Language : 

S-817 Datasheet, PDF (10/50 Pages) Seiko Instruments Inc – SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
Rev.3.0_00
2. S-817B series
Table 10
(Ta=25°C unless otherwise specified)
Measur-
Item
Symbol
Conditions
Min. Typ. Max. Units ement
circuits
Output voltage *1
Output current *2
Dropout voltage *3
VOUT(E) VIN=VOUT(S)+2 V, IOUT=10 mA
VOUT(S)
× 0.98
VOUT(S)
VOUT(S)
× 1.02
V
1
IOUT
VOUT(S)+2 V 1.1 V ≤ VOUT(S) ≤ 1.9 V
20
−
− mA
3
≤ VIN≤10 V 2.0 V ≤ VOUT(S) ≤ 2.9 V 35
−
−
3.0 V ≤ VOUT(S) ≤ 3.9 V 50
−
−
4.0 V ≤ VOUT(S) ≤ 4.9 V 65
−
−
5.0 V ≤ VOUT(S) ≤ 6.0 V 75
−
−
Vdrop
IOUT = 10
mA
1.1 V ≤ VOUT(S) ≤ 1.4 V
− 0.92 1.58
V
1
1.5 V ≤ VOUT(S) ≤ 1.9 V
−
2.0 V ≤ VOUT(S) ≤ 2.4 V
−
2.5 V ≤ VOUT(S) ≤ 2.9 V
−
3.0 V ≤ VOUT(S) ≤ 3.4 V
−
3.5 V ≤ VOUT(S) ≤ 3.9 V
−
4.0 V ≤ VOUT(S) ≤ 4.4 V
−
4.5 V ≤ VOUT(S) ≤ 4.9 V
−
5.0 V ≤ VOUT(S) ≤ 5.4 V
−
5.5 V ≤ VOUT(S) ≤ 6.0 V
−
Line regulation 1
∆ VOUT1
VOUT(S) + 1 V ≤ VIN ≤ 10 V,
IOUT = 1 mA
−
Line regulation 2
∆ VOUT2 VOUT(S) + 1 V ≤ VIN ≤ 10 V, IOUT = 1 µA −
Load regulation
∆ VOUT3
VIN=VOUT(S)+ 1.1 V ≤ VOUT(S) ≤ 1.9 V,
2V
1 µA ≤ IOUT ≤ 10 mA
−
2.0 V ≤ VOUT(S) ≤ 2.9 V,
1 µA ≤ IOUT ≤ 20 mA
−
3.0 V ≤ VOUT(S) ≤ 3.9 V,
1 µA ≤ IOUT ≤ 30 mA
−
4.0 V ≤ VOUT(S) ≤ 4.9 V,
1 µA ≤ IOUT ≤ 40 mA
−
5.0 V ≤ VOUT(S) ≤ 6.0 V,
1 µA ≤ IOUT ≤ 50 mA
−
Output voltage
∆VOUT VIN = VOUT(S) + 1 V, IOUT = 10 mA,
temperature coefficient *4 ∆Ta• VOUT −40°C ≤ Ta ≤ 85°C
−
0.58 0.99
0.40 0.67
0.31 0.51
0.25 0.41
0.22 0.35
0.19 0.30
0.18 0.27
0.16 0.25
0.15 0.23
5 20 mV
5 20
5 20
10 30
20 45
25 65
35 80
±100 −
ppm
/°C
Current consumption
Input voltage
ISS
VIN = VOUT(S) + 2 V, no load
VIN
−
− 1.2 2.5 µA
2
−
− 10
V
1
*1. VOUT(S): Specified output voltage
VOUT(E): Effective output voltage
i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V.
*2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current.
*3. Vdrop = VIN1−(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E)
after gradually decreasing input voltage.
*4. Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation.
[ ] [ ] [ ] ∆VOUT mV/°C *1 = VOUT(S) V *2 × ∆VOUT ppm/°C *3 ÷ 1000
∆Ta
∆Ta • VOUT
*1. Temperature change ratio of the output voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
10
Seiko Instruments Inc.