English
Language : 

S1167 Datasheet, PDF (8/31 Pages) Seiko Instruments Inc – ULTRA LOW CURRENT CONSUMPTION, HIGH RIPPLE REJECTION
ULTRA LOW CURRENT CONSUMPTION, HIGH RIPPLE REJECTION AND LOW DROPOUT CMOS VOLTAGE REGULATOR
S-1167 Series
Rev.3.2_00
 Electrical Characteristics
Item
Output voltage*1
Output current*2
Symbol
VOUT(E)
IOUT
Dropout voltage*3
Vdrop
Line regulation
Load regulation
Output voltage
temperature coefficient*4
Current consumption
during operation
Current consumption
during shutdown
Input voltage
ON / OFF pin
input voltage “H”
ON / OFF pin
input voltage “L”
ON / OFF pin
input current “H”
ON / OFF pin
input current “L”
ΔVOUT1
Δ VIN • VOUT
ΔVOUT2
ΔVOUT
ΔTa • VOUT
ISS1
ISS2
VIN
VSH
VSL
ISH
ISL
Table 6
Condition
VIN = VOUT(S) + 1.0 V, IOUT = 30 mA
VIN ≥ VOUT(S) + 1.0 V
IOUT = 100 mA
1.5 V ≤ VOUT(S) ≤ 1.9 V
2.0 V ≤ VOUT(S) ≤ 2.4 V
2.5 V ≤ VOUT(S) ≤ 2.9 V
3.0 V ≤ VOUT(S) ≤ 3.2 V
3.3 V ≤ VOUT(S) ≤ 5.5 V
VOUT(S) + 0.5 V ≤ VIN ≤ 6.5 V, IOUT = 30 mA
VIN = VOUT(S) + 1.0 V, 10 μA ≤ IOUT ≤ 100 mA
VIN = VOUT(S) + 1.0 V, IOUT = 30 mA,
−40°C ≤ Ta ≤ 85°C
VIN = VOUT(S) + 1.0 V, ON / OFF pin = ON,
No load
VIN = VOUT(S) + 1.0 V, ON / OFF pin = OFF,
No load
−
VIN = VOUT(S) + 1.0 V, RL = 1.0 kΩ
VIN = VOUT(S) + 1.0 V, RL = 1.0 kΩ
VIN = 6.5 V, VON / OFF = 6.5 V
VIN = 6.5 V, VON / OFF = 0 V
(Ta = 25°C unless otherwise specified)
Min.
Typ.
Max.
Unit
Test
Circuit
VOUT(S) VOUT(S) VOUT(S)
× 0.99
× 1.01
V
1
150*5
−
−
mA
3
0.5 0.54 0.58
V
1
−
0.23 0.35
V
1
−
0.20 0.30
V
1
−
0.15 0.23
V
1
−
0.14 0.21
V
1
−
0.05 0.2
%/V
1
−
20
40
mV
1
− ±100 − ppm/ °C 1
−
9
16
μA
2
−
0.1
0.9
μA
2
2.0
−
6.5
V
−
1.5
−
−
V
4
−
−
0.3
V
4
−0.1
−
0.1
μA
4
−0.1
−
0.1
μA
4
Ripple rejection
RR
VIN = VOUT(S) + 1.0 V,
f = 1.0 kHz,
1.5 V ≤ VOUT(S) ≤ 3.0 V
−
70
−
dB
5
ΔVrip = 0.5 Vrms,
IOUT = 30 mA
3.1 V ≤ VOUT(S) ≤ 5.5 V
−
65
−
dB
5
Short-circuit current
ISHORT
VIN = VOUT(S) + 1.0 V, ON / OFF pin = ON,
VOUT = 0 V
−
300
−
mA
3
*1. VOUT(S) : Set output voltage
VOUT(E) : Actual output voltage
Output voltage when fixing IOUT (= 30 mA) and inputting VOUT(S) + 1.0 V
*2. The output current at which the output voltage becomes 95% of VOUT(E) after gradually increasing the output current.
*3. Vdrop = VIN1 − (VOUT3 × 0.98)
VOUT3 is the output voltage when VIN = VOUT(S) + 1.0 V and IOUT = 100 mA.
VIN1 is the input voltage at which the output voltage becomes 98% of VOUT3 after gradually decreasing the input
voltage.
*4. A change in the temperature of the output voltage [mV/°C] is calculated using the following equation.
ΔVOUT
ΔTa
[mV/°C]*1 = VOUT(S) [V]*2 ×
ΔVOUT
ΔTa • VOUT
[ppm/°C]*3 ÷ 1000
*1. Change in temperature of the output voltage
*2. Set output voltage
*3. Output voltage temperature coefficient
*5. The output current can be at least this value.
Due to restrictions on the package power dissipation, this value may not be satisfied. Attention should be paid to the
power dissipation of the package when the output current is large.
This specification is guaranteed by design.
8
Seiko Instruments Inc.