English
Language : 

BD95500MUV Datasheet, PDF (18/21 Pages) Rohm – Switching Regulator with MOSFET for DDR-SDRAM Cores
BD95500MUV
Technical Note
●Operation Notes
(1) Absolute maximum ratings
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc.,
can break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit.
If any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices,
such as fuses.
(2) Connecting the power supply connector backward
Connecting of the power supply in reverse polarity can damage IC. Take precautions when connecting the power supply
lines. An external direction diode can be added.
(3) Power supply lines
Design PCB layout pattern to provide low impedance GND and supply lines. To obtain a low noise ground and supply
line, separate the ground section and supply lines of the digital and analog blocks. Furthermore, for all power supply
terminals to ICs, connect a capacitor between the power supply and the GND terminal. When applying electrolytic
capacitors in the circuit, not that capacitance characteristic values are reduced at low temperatures.
(4) GND voltage
The potential of GND pin must be minimum potential in all operating conditions.
(5) Thermal design
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating
conditions.
(6) Inter-pin shorts and mounting errors
Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any
connection error or if pins are shorted together.
(7) Actions in strong electromagnetic field
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to
malfunction.
(8) ASO
When using the IC, set the output transistor so that it does not exceed absolute maximum ratings or ASO.
(9) Thermal shutdown circuit
The IC incorporates a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit (TSD circuit) is
designed only to shut the IC off to prevent thermal runaway. It is not designed to protect the IC or guarantee its operation.
Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this
circuit is assumed.
BD95500MUV
TSD ON Temp. [℃] (typ.)
175
Hysteresis Temp. [℃] (typ.)
15
(10) Testing on application boards
When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to
stress. Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting
it to or removing it from a jig or fixture during the inspection process. Ground the IC during assembly steps as an
antistatic measure. Use similar precaution when transporting or storing the IC.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
18/20
2010.05 - Rev.C