English
Language : 

DS90CR281 Datasheet, PDF (12/14 Pages) National Semiconductor (TI) – 28-Bit Channel Link
Applications Information (Continued)
DS012638-21
FIGURE 19. CHANNEL LINK
Decoupling Configuration
CLOCK JITTER: The CHANNEL LINK devices employ a
PLL to generate and recover the clock transmitted across the
LVDS interface. The width of each bit in the serialized LVDS
data stream is one-seventh the clock period. For example, a
40 MHz clock has a period of 25 ns which results in a data bit
width of 3.57 ns. Differential skew (∆t within one differential
pair), interconnect skew (∆t of one differential pair to an-
other) and clock jitter will all reduce the available window for
sampling the LVDS serial data streams. Care must be taken
to ensure that the clock input to the transmitter be a clean
low noise signal. Individual bypassing of each VCC to ground
will minimize the noise passed on to the PLL, thus creating a
low jitter LVDS clock. These measures provide more margin
for channel-to-channel skew and interconnect skew as a part
of the overall jitter/skew budget.
COMMON MODE vs. DIFFERENTIAL MODE NOISE MAR-
GIN: The typical signal swing for LVDS is 300 mV centered
at +1.2V. The CHANNEL LINK receiver supports a 100 mV
threshold therefore providing approximately 200 mV of differ-
ential noise margin. Common mode protection is of more im-
portance to the system’s operation due to the differential
data transmission. LVDS supports an input voltage range of
Ground to +2.4V. This allows for a ±1.0V shifting of the cen-
ter point due to ground potential differences and common
mode noise.
POWER SEQUENCING AND POWERDOWN MODE: Out-
puts of the CHANNEL LINK transmitter remain in
TRI-STATE® until the power supply reaches 3V. Clock and
data outputs will begin to toggle 10 ms after VCChas reached
4.5V and the Powerdown pin is above 2V. Either device may
be placed into a powerdown mode at any time by asserting
the Powerdown pin (active low). Total power dissipation for
each device will decrease to 5 µW (typical).
The CHANNEL LINK chipset is designed to protect itself
from accidental loss of power to either the transmitter or re-
ceiver. If power to the transmit board is lost, the receiver
clocks (input and output) stop. The data outputs (RxOUT) re-
tain the states they were in when the clocks stopped. When
the receiver board loses power, the receiver inputs are
shorted to V CC through an internal diode. Current is limited
(5 mA per input) by the fixed current mode drivers, thus
avoiding the potential for latchup when powering the device.
www.national.com
FIGURE 20. Single-Ended and Differential Waveforms
DS012638-22
12