English
Language : 

MT9044 Datasheet, PDF (5/30 Pages) Mitel Networks Corporation – T1/E1/OC3 System Synchronizer
Advance Information
MT9044
Functional Description
The MT9044 is a Multitrunk System Synchronizer,
providing timing (clock) and synchronization (frame)
signals to interface circuits for T1 and E1 Primary
Rate Digital Transmission links.
Figure 1 shows the functional block diagram which is
described in the following sections.
Reference Select MUX Circuit
The MT9044 accepts two simultaneous reference
input signals and operates on their falling edges.
Either the primary reference (PRI) signal or the
secondary reference (SEC) signal can be selected
as input to the TIE Corrector Circuit. The selection is
based on the Control, Mode and Reference
Selection of the device. See Tables 1, 4 and 5.
Frequency Select MUX Circuit
The MT9044 operates with one of three possible
input reference frequencies (8kHz, 1.544MHz or
2.048MHz). The frequency select inputs (FS1 and
FS2) determine which of the three frequencies may
be used at the reference inputs (PRI and SEC). Both
inputs must have the same frequency applied to
them. A reset (RST) must be performed after every
frequency select input change. Operation with FS1
and FS2 both at logic low is reserved and must not
be used. See Table 1.
FS2
FS1
Input Frequency
0
0
Reserved
0
1
8kHz
1
0
1.544MHz
1
1
2.048MHz
Table 1 - Input Frequency Selection
Time Interval Error (TIE) Corrector Circuit
The TIE corrector circuit, when enabled, prevents a
step change in phase on the input reference signals
(PRI or SEC) from causing a step change in phase at
the input of the DPLL block of Figure 1.
During reference input rearrangement, such as
during a switch from the primary reference (PRI) to
the secondary reference (SEC), a step change in
phase on the output signals will occur. A phase step
at the input of the DPLL will lead to unacceptable
phase changes in the output signal.
As shown in Figure 3, the TIE Corrector Circuit
receives one of the two reference (PRI or SEC)
signals, passes the signal through a programmable
delay line, and uses this delayed signal as an
internal virtual reference, which is input to the DPLL.
Therefore, the virtual reference is a delayed version
of the selected reference.
During a switch, from one reference to the other, the
State Machine first changes the mode of the device
PRI or SEC
from
Reference
Select Mux
Programmable
Delay Circuit
TCLR
Resets Delay
Control
Circuit
Control Signal
Delay Value
Compare
Circuit
TIE Corrector
Enable
from
State Machine
Feedback
Signal from
Frequency
Select MUX
Figure 3 - TIE Corrector Circuit
Virtual
Reference
to DPLL
5