English
Language : 

MAX148_V5 Datasheet, PDF (17/23 Pages) Maxim Integrated Products – +2.7V to +5.25V, Low-Power, 8-Channel, Serial 10-Bit ADCs
+2.7V to +5.25V, Low-Power, 8-Channel,
Serial 10-Bit ADCs
AVERAGE SUPPLY CURRENT
vs. CONVERSION RATE (USING FASTPD)
10,000
RLOAD = ∞
CODE = 1010101000
1000
8 CHANNELS
1 CHANNEL
100
0
1
0.1 1 10 100 1k 10k 100k 1M
CONVERSION RATE (Hz)
Figure 14b. MAX149 Supply Current vs. Conversion Rate,
FASTPD
TYPICAL REFERENCE-BUFFER POWER-UP
DELAY vs. TIME IN SHUTDOWN
2.0
1.5
1.0
0.5
0
0.001
0.01
0.1
1
10
TIME IN SHUTDOWN (s)
Figure 14c. Typical Reference-Buffer Power-Up Delay vs.
Time in Shutdown
Software Power-Down
Software power-down is activated using bits PD1 and
PD0 of the control byte. As shown in Table 5, PD1 and
PD0 also specify the clock mode. When software shut-
down is asserted, the ADC operates in the last specified
clock mode until the conversion is complete. Then the
ADC powers down into a low quiescent-current state.
In internal clock mode, the interface remains active
and conversion results may be clocked out after the
MAX148/MAX149 enter a software power-down.
The first logical 1 on DIN is interpreted as a start bit and
powers up the MAX148/MAX149. Following the start bit, the
data input word or control byte also determines clock mode
and power-down states. For example, if the DIN word con-
tains PD1 = 1, then the chip remains powered up. If PD0
= PD1 = 0, a power-down resumes after one conversion.
Hardware Power-Down
Pulling SHDN low places the converter in hardware pow-
er-down (Table 6). Unlike software power-down mode, the
conversion is not completed; it stops coincidentally with
SHDN being brought low. SHDN also controls the clock
frequency in internal clock mode. Leaving SHDN uncon-
nected sets the internal clock frequency to 1.8MHz. When
returning to normal operation with SHDN unconnected,
there is a tRC delay of approximately 2MI x CL, where CL
is the capacitive loading on the SHDN pin. Pulling SHDN
high sets internal clock frequency to 225kHz. This feature
eases the settling-time requirement for the reference volt-
age. With an external reference, the MAX148/MAX149
can be considered fully powered up within 2Fs of actively
pulling SHDN high.
Power-Down Sequencing
The MAX148/MAX149 auto power-down modes can
save considerable power when operating at less than
maximum sample rates. Figures 13, 14a, and 14b show
the average supply current as a function of the sampling
rate. The following discussion illustrates the various
power-down sequences.
Lowest Power at Up to 500
Conversions/Channel/Second
The following examples show two different power-down
sequences. Other combinations of clock rates, compen-
sation modes, and power-down modes may give lowest
power consumption in other applications.
Figure 14a depicts the MAX149 power consumption for
one or eight channel conversions utilizing full power-
down mode and internal-reference compensation. A
0.01FF bypass capacitor at REFADJ forms an RC filter
with the internal 20kI reference resistor with a 0.2ms
time constant. To achieve full 10-bit accuracy, 8 time
constants or 1.6ms are required after power-up. Waiting
this 1.6ms in FASTPD mode instead of in full power-up
can reduce power consumption by a factor of 10 or
more. This is achieved by using the sequence shown in
Figure 15.
  17