English
Language : 

LTC3859AL Datasheet, PDF (27/44 Pages) Linear Technology – Triple Output, Buck/Buck/Boost Synchronous Controller with 28μA Burst Mode IQ
LTC3859AL
applications information
INTVCC Regulators
The LTC3859AL features two separate internal P-channel
low dropout linear regulators (LDO) that supply power
at the INTVCC pin from either the VBIAS supply pin or the
EXTVCC pin depending on the connection of the EXTVCC
pin. INTVCC powers the gate drivers and much of the
LTC3859AL’s internal circuitry. The VBIAS LDO and the
EXTVCC LDO regulate INTVCC to 5.4V. Each of these must
be bypassed to ground with a minimum of 4.7µF ceramic
capacitor. No matter what type of bulk capacitor is used, an
additional 1µF ceramic capacitor placed directly adjacent
to the INTVCC and PGND IC pins is highly recommended.
Good bypassing is needed to supply the high transient
currents required by the MOSFET gate drivers and to
prevent interaction between the channels.
High input voltage applications in which large MOSFETs
are being driven at high frequencies may cause the maxi-
mum junction temperature rating for the LTC3859AL to be
exceeded. The INTVCC current, which is dominated by the
gate charge current, may be supplied by either the VBIAS
LDO or the EXTVCC LDO. When the voltage on the EXTVCC
pin is less than 4.7V, the VBIAS LDO is enabled. Power
dissipation for the IC in this case is highest and is equal to
VBIAS • IINTVCC. The gate charge current is dependent
on operating frequency as discussed in the Efficiency
Considerations section. The junction temperature can be
estimated by using the equations given in Note 2 of the
Electrical Characteristics. For example, the LTC3859AL
INTVCC current is limited to less than 40mA from a 40V
supply when not using the EXTVCC supply at a 70°C ambi-
ent temperature in the QFN package:
TJ = 70°C + (40mA)(40V)(34°C/W) = 125°C
To prevent the maximum junction temperature from being
exceeded, the input supply current must be checked while
operating in continuous conduction mode (PLLIN/MODE
= INTVCC) at maximum VIN.
When the voltage applied to EXTVCC rises above 4.7V, the
VBIAS LDO is turned off and the EXTVCC LDO is enabled.
The EXTVCC LDO remains on as long as the voltage applied
to EXTVCC remains above 4.5V. The EXTVCC LDO attempts
to regulate the INTVCC voltage to 5.4V, so while EXTVCC
is less than 5.4V, the LDO is in dropout and the INTVCC
voltage is approximately equal to EXTVCC. When EXTVCC
is greater than 5.4V, up to an absolute maximum of 14V,
INTVCC is regulated to 5.4V.
Using the EXTVCC LDO allows the MOSFET driver and
control power to be derived from one of the LTC3859AL’s
switching regulator outputs (4.7V ≤ VOUT ≤ 14V) dur-
ing normal operation and from the VBIAS LDO when the
output is out of regulation (e.g., startup, short-circuit). If
more current is required through the EXTVCC LDO than
is specified, an external Schottky diode can be added
between the EXTVCC and INTVCC pins. In this case, do
not apply more than 6V to the EXTVCC pin and make sure
that EXTVCC ≤ VBIAS.
Significant efficiency and thermal gains can be realized
by powering INTVCC from the buck output, since the VIN
current resulting from the driver and control currents will
be scaled by a factor of (Duty Cycle)/(Switcher Efficiency).
For 5V to 14V regulator outputs, this means connecting
the EXTVCC pin directly to VOUT. Tying the EXTVCC pin to
a 8.5V supply reduces the junction temperature in the
previous example from 125°C to:
TJ = 70°C + (40mA)(8.5V)(34°C/W) = 82°C
However, for 3.3V and other low voltage outputs, additional
circuitry is required to derive INTVCC power from the output.
For more information www.linear.com/3859AL
3859alf
27