English
Language : 

LTC3788_15 Datasheet, PDF (24/32 Pages) Linear Technology – 2-Phase, Dual Output Synchronous Boost Controller
LTC3788
Applications Information
The RSENSE resistor value can be calculated by using the
maximum current sense voltage specification with some
accommodation for tolerances:
RSENSE
≤
75mV
9.25A
=
0.008Ω
Choosing 1% resistors: RA = 5k and RB = 95.3k yields an
output voltage of 24.072V.
The power dissipation on the top side MOSFET can
be easily estimated. Choosing a Vishay Si7848BDP
MOSFET results in: RDS(ON) = 0.012Ω, CMILLER = 150pF.
At maximum input voltage with T(estimated) = 50°C:
PMAIN
=
(24V − 12V)
(12V)2
24V
•
(4A)2
• [1+ (0.005)(50°C − 25°C)] • 0.008Ω
+ (1.7)(24V)3 4A (150pF)(350kHz) = 0.7W
12V
COUT is chosen to filter the square current in the output.
The maximum output current peak is:
IOUT(PEAK )
=
4•


1
+
31% 
2 
=
4.62A
A low ESR (5mΩ) capacitor is suggested. This capacitor
will limit output voltage ripple to 23.1mV (assuming ESR
dominate ripple).
PC Board Layout Checklist
When laying out the printed circuit board, the following
checklist should be used to ensure proper operation of
the IC. These items are also illustrated graphically in the
layout diagram of Figure 7. Figure 8 illustrates the current
waveforms present in the various branches of the 2-phase
synchronous regulators operating in the continuous mode.
Check the following in your layout:
1. Put the bottom N-channel MOSFETs MBOT1 and MBOT2
and the top N-channel MOSFETs MTOP1 and MTOP2
in one compact area with COUT.
2. Are the signal and power grounds kept separate? The
combined IC signal ground pin and the ground return of
CINTVCC must return to the combined COUT (–) terminals.
The path formed by the bottom N-channel MOSFET and
the CIN capacitor should have short leads and PC trace
lengths. The output capacitor (–) terminals should be
connected as close as possible to the (–) terminals of
the input capacitor by placing the capacitors next to
each other.
3. Do the LTC3788 VFB pins’ resistive dividers connect to
the (+) terminals of COUT? The resistive divider must be
connected between the (+) terminal of COUT and signal
ground and placed close to the VFB pin. The feedback
resistor connections should not be along the high cur-
rent input feeds from the input capacitor(s).
4. Are the SENSE – and SENSE+ leads routed together with
minimum PC trace spacing? The filter capacitor between
SENSE+ and SENSE – should be as close as possible
to the IC. Ensure accurate current sensing with Kelvin
connections at the sense resistor.
5. Is the INTVCC decoupling capacitor connected close
to the IC, between the INTVCC and the power ground
pins? This capacitor carries the MOSFET drivers’ cur-
rent peaks. An additional 1µF ceramic capacitor placed
immediately next to the INTVCC and PGND pins can help
improve noise performance substantially.
6. Keep the switching nodes (SW1, SW2), top gate nodes
(TG1, TG2) and boost nodes (BOOST1, BOOST2) away
from sensitive small-signal nodes, especially from
the opposites channel’s voltage and current sensing
feedback pins. All of these nodes have very large and
fast moving signals and, therefore, should be kept on
the output side of the LTC3788 and occupy a minimal
PC trace area.
7. Use a modified “star ground” technique: a low imped-
ance, large copper area central grounding point on
the same side of the PC board as the input and output
capacitors with tie-ins for the bottom of the INTVCC
decoupling capacitor, the bottom of the voltage feedback
resistive divider and the SGND pin of the IC.
3788fc
24