English
Language : 

LTC3788_15 Datasheet, PDF (20/32 Pages) Linear Technology – 2-Phase, Dual Output Synchronous Boost Controller
LTC3788
Applications Information
INTVCC Regulators
The LTC3788 features two separate internal P-channel
low dropout linear regulators (LDO) that supply power at
the INTVCC pin from either the VBIAS supply pin or the
EXTVCC pin depending on the connection of the EXTVCC
pin. INTVCC powers the gate drivers and much of the
LTC3788’s internal circuitry. The VBIAS LDO and the
EXTVCC LDO regulate INTVCC to 5.4V. Each of these can
supply a peak current of 50mA and must be bypassed to
ground with a minimum of 4.7µF ceramic capacitor. Good
bypassing is needed to supply the high transient currents
required by the MOSFET gate drivers and to prevent in-
teraction between the channels.
High input voltage applications in which large MOSFETs
are being driven at high frequencies may cause the maxi-
mum junction temperature rating for the LTC3788 to be
exceeded. The INTVCC current, which is dominated by the
gate charge current, may be supplied by either the VBIAS
LDO or the EXTVCC LDO. When the voltage on the EXTVCC
pin is less than 4.8V, the VBIAS LDO is enabled. In this
case, power dissipation for the IC is highest and is equal
to VIN • IINTVCC. The gate charge current is dependent
on operating frequency, as discussed in the Efficiency
Considerations section. The junction temperature can
be estimated by using the equations given in Note 3 of
the Electrical Characteristics. For example, the LTC3788
INTVCC current is limited to less than 40mA from a 40V
supply when not using the EXTVCC supply:
TJ = 70°C + (40mA)(40V)(34°C/W) = 125°C
To prevent the maximum junction temperature from being
exceeded, the input supply current must be checked while
operating in continuous conduction mode (PLLIN/MODE
= INTVCC) at maximum VIN.
When the voltage applied to EXTVCC rises above 4.8V, the
VIN LDO is turned off and the EXTVCC LDO is enabled. The
EXTVCC LDO remains on as long as the voltage applied to
EXTVCC remains above 4.55V. The EXTVCC LDO attempts
to regulate the INTVCC voltage to 5.4V, so while EXTVCC
is less than 5.4V, the LDO is in dropout and the INTVCC
voltage is approximately equal to EXTVCC. When EXTVCC
is greater than 5.4V, up to an absolute maximum of 6V,
INTVCC is regulated to 5.4V.
20
Significant thermal gains can be realized by powering
INTVCC from an external supply. Tying the EXTVCC pin
to a 5V supply reduces the junction temperature in the
previous example from 125°C to 77°C:
TJ = 70°C + (40mA)(5V)(34°C/W) = 77°C
If more current is required through the EXTVCC LDO than
is specified, an external Schottky diode can be added
between the EXTVCC and INTVCC pins. Make sure that in
all cases EXTVCC ≤ VBIAS.
The following list summarizes possible connections for
EXTVCC:
EXTVCC Left Open (or Grounded). This will cause
INTVCC to be powered from the internal 5.4V regulator
resulting in an efficiency penalty at high input voltages.
EXTVCC Connected to an External Supply. If an external
supply is available in the 5.4V to 6V range, it may be
used to power EXTVCC providing it is compatible with the
MOSFET gate drive requirements. Ensure that EXTVCC
< VBIAS.
Topside MOSFET Driver Supply (CB, DB)
External bootstrap capacitors CB connected to the BOOST
pins supply the gate drive voltages for the topside MOS-
FETs. Capacitor CB in the Block Diagram is charged though
external diode DB from INTVCC when the SW pin is low.
When one of the topside MOSFETs is to be turned on, the
driver places the CB voltage across the gate-source of the
desired MOSFET. This enhances the MOSFET and turns on
the topside switch. The switch node voltage, SW, rises to
VIN and the BOOST pin follows. With the topside MOSFET
on, the boost voltage is above the input supply: VBOOST =
VIN + VINTVCC. The value of the boost capacitor CB needs
to be 100 times that of the total input capacitance of the
topside MOSFET(s). The reverse breakdown of the external
Schottky diode must be greater than VIN(MAX).
The external diode DB can be a Schottky diode or silicon
diode, but in either case it should have low leakage and fast
recovery. Pay close attention to the reverse leakage at high
temperatures where it generally increases substantially.
3788fc