English
Language : 

LTC3733_15 Datasheet, PDF (24/32 Pages) Linear Technology – 3-Phase, Buck Controllers for AMD CPUs
LTC3733/LTC3733-1
APPLICATIO S I FOR ATIO
The output voltage will be set by the VID code according
to Table 1.
The power dissipation on the topside MOSFET can be
estimated. Using a Fairchild FDS6688 for example, RDS(ON)
= 7mΩ, CMILLER = 15nC/15V = 1000pF. At maximum input
voltage with T(estimated) = 50°C:
[ ] PMAIN
≈
1.8V
20V
(15)2
1+
(0.005)(50°C
−
25°C)
0.007Ω
+
(20)2


45A 
(2)(3)
(2Ω)(1000pF)

5V
1
– 1.8V
+
1
1.8V
 (400kHz)
=
2.2W
The worst-case power dissipation by the synchronous
MOSFET under normal operating conditions at elevated
ambient temperature and estimated 50°C junction tem-
perature rise is:
PSYNC
=
20V − 1.3V
20V
(15A)2(1.25)(0.007Ω)
=
1.84W
A short circuit to ground will result in a folded back current
of:
ISC
≈
25mV
(2 + 3)mΩ
+
1
2


150ns(20V)
0.6µH 
=
7.5A
with a typical value of RDS(ON) and d = (0.005/°C)(50°C) =
0.25. The resulting power dissipated in the bottom MOSFET
is:
PSYNC = (7.5A)2(1.25)(0.007Ω) ≈ 0.5W
which is less than one third of the normal, full load
conditions. Incidentally, since the load no longer dissi-
pates any power, total system power is decreased by over
90%. Therefore, the system actually cools significantly
during a shorted condition!
PC Board Layout Checklist
When laying out the printed circuit board, the following
checklist should be used to ensure proper operation of the
IC. These items are also illustrated graphically in the layout
diagram of Figure 10. Check the following in the PC layout:
1) Are the signal and power ground paths isolated? Keep the
SGND at one end of a printed circuit path thus preventing
MOSFET currents from traveling under the IC. The IC signal
ground pin should be used to hook up all control circuitry
on one side of the IC, routing the copper through SGND,
under the IC covering the “shadow” of the package, connect-
ing to the PGND pin and then continuing on to the (–) plates
of CIN and COUT. The VCC decoupling capacitor should be
placed immediately adjacent to the IC between the VCC pin
and PGND. A 1µF ceramic capacitor of the X7R or X5R type
is small enough to fit very close to the IC to minimize the ill
effects of the large current pulses drawn to drive the bottom
MOSFETs. An additional 5µF to 10uF of ceramic, tantalum
or other very low ESR capacitance is recommended in or-
der to keep the internal IC supply quiet. The power ground
returns to the sources of the bottom N-channel MOSFETs,
anodes of the Schottky diodes and (–) plates of CIN, which
should have as short lead lengths as possible.
2) Does the IC IN+ pin connect to the (+) plates of COUT?
A 30pF to 300pF feedforward capacitor between the
DIFFOUT and EAIN pins should be placed as close as
possible to the IC.
3) Are the SENSE– and SENSE+ printed circuit traces for
each channel routed together with minimum PC trace
spacing? The filter capacitors between SENSE+ and SENSE–
for each channel should be as close as possible to the pins
of the IC. Connect the SENSE– and SENSE+ pins to the pads
of the sense resistor as illustrated in Figure 11.
4) Do the (+) plates of CIN connect to the drains of the
topside MOSFETs as closely as possible? This capacitor
provides the pulsed current to the MOSFETs.
5) Keep the switching nodes, SWITCH, BOOST and TG
away from sensitive small-signal nodes. Ideally the
SWITCH, BOOST and TG printed circuit traces should be
routed away and separated from the IC and the “quiet” side
of the IC.
6) The filter capacitors between the ITH and SGND pins
should be as close as possible to the pins of the IC.
3733f
24