English
Language : 

LTC3857-1_15 Datasheet, PDF (23/38 Pages) Linear Technology – Low IQ, Dual, 2-Phase Synchronous Step-Down Controller
LTC3857-1
APPLICATIONS INFORMATION
Phase-Locked Loop and Frequency Synchronization
The LTC3857-1 has an internal phase-locked loop (PLL)
comprised of a phase frequency detector, a lowpass filter,
and a voltage-controlled oscillator (VCO). This allows the
turn-on of the top MOSFET of controller 1 to be locked to
the rising edge of an external clock signal applied to the
PLLIN/MODE pin. The turn-on of controller 2’s top MOSFET
is thus 180 degrees out of phase with the external clock.
The phase detector is an edge sensitive digital type that
provides zero degrees phase shift between the external
and internal oscillators. This type of phase detector does
not exhibit false lock to harmonics of the external clock.
If the external clock frequency is greater than the internal
oscillator’s frequency, fOSC, then current is sourced continu-
ously from the phase detector output, pulling up the VCO
input. When the external clock frequency is less than fOSC,
current is sunk continuously, pulling down the VCO input.
If the external and internal frequencies are the same but
exhibit a phase difference, the current sources turn on for
an amount of time corresponding to the phase difference.
The voltage at the VCO input is adjusted until the phase
and frequency of the internal and external oscillators are
identical. At the stable operating point, the phase detector
output is high impedance and the internal filter capacitor,
CLP, holds the voltage at the VCO input.
Note that the LTC3857-1 can only be synchronized to an
external clock whose frequency is within range of the
LTC3857-1’s internal VCO, which is nominally 55kHz to
1MHz. This is guaranteed to be between 75kHz and 850kHz.
Typically, the external clock (on the PLLIN/MODE pin) input
high threshold is 1.6V, while the input low threshold is 1.1V.
Rapid phase locking can be achieved by using the FREQ
pin to set a free-running frequency near the desired
1000
900
800
700
600
500
400
300
200
100
0
15 25 35 45 55 65 75 85 95 105 115 125
FREQ PIN RESISTOR (kΩ)
38571 F10
Figure 10. Relationship Between Oscillator Frequency
and Resistor Value at the FREQ Pin
synchronization frequency. The VCO’s input voltage is
prebiased at a frequency corresponding to the frequency
set by the FREQ pin. Once prebiased, the PLL only needs
to adjust the frequency slightly to achieve phase lock
and synchronization. Although it is not required that the
free-running frequency be near external clock frequency,
doing so will prevent the operating frequency from passing
through a large range of frequencies as the PLL locks.
Table 2 summarizes the different states in which the FREQ
pin can be used.
Table 2
FREQ PIN
0V
INTVCC
Resistor
Any of the Above
PLLIN/MODE PIN
DC Voltage
DC Voltage
DC Voltage
External Clock
FREQUENCY
350kHz
535kHz
50kHz–900kHz
Phase –Locked to
External Clock
38571fc
23